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ABSTRACT 

In this paper, we examine the use of exponentially 
weighted moving average (EWMA) control charts for the 
detection of initialization bias in steady state simulation 
experiments.  EWMA charts have the interesting property 
of being more sensitive to shifts in the data as compared to 
other control charting techniques.  We exploit this sensitiv-
ity by developing a criteria for searching for the deletion 
point when the EWMA is applied to the reversed data se-
quence.  This allows us to more easily detect and count the 
number of times the smoothed sequence remains in con-
trol.  Our results indicate that the procedure can quickly 
find and recommend a deletion point.  In addition, the 
properties of the resulting estimators are good if the dataset  
that is being analyzed does not have an overtly large 
amount of biased data points.  We use experimental test 
cases to illustrate the properties of the procedure. 

1 INTRODUCTION 

Consider the output stochastic process { }iY  of the simula-
tion.  Let ( )IyFi | be the conditional cumulative distribution 
function of { }iY where I  represents the initial conditions 
used to start the simulation at time 0.  If ( ) ( )yFIyFi →|  
when ∞→i , for all initial conditions I, then ( )yF  is called 
the steady state distribution of the output process. (Law & 
Kelton, 2002).  In steady state simulation, we are often inter-
ested in estimating parameters of the steady state distribu-
tion, ( )yF , such as the steady state mean,μ .  Because the 
initial distributions ( )IyFi |  tend to depend more heavily on 
the initial conditions, estimators of μ such as the sample av-
erage, ( )∑

=
=

n

i
iYnY

1
1 , will tend to be biased.  This is the so 

called initialization bias problem in steady state simulation.  
Unless we can generate the initial conditions of the simula-
tion according to ( )yF , which we do not know, we must fo-
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cus on methods that detect and/or mitigate the presence of 
initialization bias.  One strategy for initialization bias mitiga-
tion is to find an index, ,d for the output process, { }iY , so 
that { }K,1; += diYi  will have substantially similar distribu-
tional properties as the steady state distribution ( )yF .  This 
is called the simulation warm up problem, where d is called 
the warm up point, and { }di ,,1K= is called the warm up 
period for the simulation. 

Over the years, many methods and rules have been 
proposed to detect the warm up period.  We refer the inter-
ested reader to Wilson and Pritsker (1978), Lada et al. 
(2003), Litton and Harmonsoky (2002), White et al. 
(2000), Cash et al. (1992), and Rossetti and Delaney 
(1995) for an overview of such methods.  Robinson (2002) 
presents a Statistical Process Control (SPC) approach for 
estimating the length of the warm-up period.  In Robinson 
(2002), the relationships between SPC and steady state 
simulation output analysis are clarified.  The Shewhart 
Control Chart is used to detect whether the model is run-
ning under steady state.  A series of procedures for imple-
menting this approach are discussed in detail in the paper.  
To determine whether the selected warm-up period is suf-
ficiently long to remove initialization bias, Schruben 
(1982) and Schruben et al. (1983) initialization bias test 
was applied.  In the example application, the length of 
warm-up period identified by the SPC approach is signifi-
cantly reduced comparing with the method described by 
Welch (1983).  According to the paper, the SPC approach 
provides a set of clear rules for determining when the 
model enters steady state.  The disadvantage is that more 
data are required in terms of replication and run length in 
order to get normalized and uncorrelated data, which is re-
quired by the discussed SPC approach. 

In this paper, we examine the potential of using ex-
ponentially weighted moving average (EWMA) control 
charting techniques to help in identifying the warm up pe-
riod.  The EWMA control chart was introduced by Roberts 

 



Rossetti, Li, and Qu 

 
(1959).  The exponentially weighted moving average is de-
fined as follows: 

 
     ( ) 11 −λ−+λ= iii ZYZ  (1) 
 
where 10 <λ<  and the starting value 00 μ=Z .  EWMA 
has been extensively studied and used for a long time due 
to its robustness to non-normality and its ability to detect 
initial small shifts in the process.  In an EWMA control 
chart, the control limits are calculated as: (See Montgom-
ery 2001 for a detailed discussion) 

 

 ( ) ( )[ ]iLUCL 2
0 11

2
λ−−

λ−
λσ+μ=  (2) 

 0  LineCenter μ=  (3) 

 ( ) ( )[ ]iLLCL 2
0 11

2
λ−−

λ−
λσ−μ=  (4) 

 
where σ is the variance of the underlying data and L  is a 
constant used to control the average run length or probabil-
ity of being out of control.  As we can see from (2) and (4), 
the control limits are functions of observation indices i .  
Hence, the control limits for initial data are narrow.  As 
time goes on, the control limits will eventually converge 
towards their process limits.  Due to this characteristic, 
EWMA control charts are more powerful than Shewhart 
based control charts to detect the initial out-control points.  
Because of these characteristics, we decided to examine 
the use of EWMA for initialization bias detection.   

Our procedure is of the class of initialization bias de-
tection/mitigation methods that we term, post-run methods. 
Post-run methods are applied to an already collected data-
set.  Welch’s procedure as well as Robinson’s SPC proce-
dure are within this class of methods.  The other class of 
initialization bias detection/mitigation methods is termed 
within-run methods.  Post-run methods have the disadvan-
tage of having to store all the data necessary for the analy-
sis, but by virtue of that fact can possibly take better ad-
vantage of the data.  Within-run methods have the 
advantage of being applied during the simulation run and 
thus do not necessarily have to store all of the data.  
Within-run methods have the disadvantage of having a lim-
ited view of the data, i.e. they can only react to data as it is 
collected.  The references within Spratt (1998) discuss a 
variety of both of these classes of methods. 

In the following section, we discuss the basic proce-
dure that we will be studying.  Then, in the following sec-
tions, we present initial results of applying the method to 
various simulation output processes.  Finally, we discuss 
our plans for future work in this area. 
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2 THE BASIC IDEA 

The basic idea behind our approach is best illustrated from 
the examination of control charts applied to some sample 
data.  The application of SPC methods and in our case the 
EWMA depends on the initial estimation of the center line, 

0μ  and the process variance, 2σ , two quantities that we 
are interested in estimating via simulation in the first place.  
In other words, if we knew 0μ we would not need to simu-
late and would not have an initialization bias problem to 
worry about.  A key question in the application of SPC 
techniques to the initialization bias problem is how to 
overcome the problem of estimating 0μ  and 2σ . 
 In the figures that follow, we generated sample data 
from functions for which we can know the appropriate dele-
tion point.  Data from these functions will also be used as 
part of the testing of our procedure.  The appendix to this 
paper describes the development and characteristics of these 
sample data generating functions.  For the function illus-
trated in Figure 1, the appropriate deletion point is 380 
which we will denote as *d   The data illustrated in Figure 1 
has a monotonically decreasing bias function with uncorre-
lated random noise with a true mean, 0.00 =μ , after *d . 
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Figure 1: Sample Data from Monotonically Decreasing 
Bias Function with Random Noise 
 
Figure 2 shows the application of an EWMA chart to the 
entire data set based on estimating 0μ  and 2σ  from the 
data past the known deletion point.  In other words, we de-
leted the data prior to *d  and formed estimators for 0μ  
and 2σ  from the remaining data.  In this case, we simply 
used the sample average and the sample variance as esti-
mators for 0μ  and 2σ  as per the following equations. 
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with *dd = . The values of L  and λ  directly affect the 
UCL and LCL and thus the average run length properties 
of the EWMA control chart.  In this example, we set the 
smoothing constant 05.0=λ and the average run length 
constant .3=L   Three sigma limits ( .3=L ) work rea-
sonably well for our settings of λ and are standard values 
in practice.  In general the settings of these parameters will 
affect the behavior of our procedures; however, further op-
timization of these parameters will be saved for future 
work. 
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Figure 2 : EWMA Control Chart ( 380=d ) 
 
The control chart given in Figure 2 was developed back-
wards  That is, we take the last data point nY  and consider 
it as the first data point when applying Equations (2)-(4).  
Thus, we reversed the sequence of the data. We do this be-
cause we assume that the initialization bias will be in the 
early part of the simulation run and we want to “detect” 
when we have gone out of control.  We might consider the 
control chart given in Figure 2 as the best we can do since 
is based on the true deletion point, *dd = .  From Figure 2, 
we can also note that a large proportion of the data falls 
within the control limits, to the right-side of the deletion 
point, as we might expect. 
 Now let us consider the case of not deleting enough of 
the data.  In Figure 3 we illustrate an EWMA control chart 
applied to the same data set as illustrated in Figure 1 ex-
cept that we estimated 0μ  and 2σ  based on .10=d   As 
indicated in Figure 3 the centerline is significantly higher 
because the points we did not delete are “biased”.  The 
control chart limits are a little wider because the biased 
data is further away from the true centerline.  This also in-
creases the variability in the data.  Remember that since the 
77
data has been reversed for this illustration, we have points 
going out of control at the end of the chart,  indicating 
some bias in the early part of the un-reversed sequence.  
Even for the case of not deleting enough data, the control 
chart is telling us something about the presence of bias.  In 
addition, we can clearly see that the proportion of points 
that fall within the control limits has decreased. 
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Figure 3 : EWMA Control Chart ( 10=d ) 
 

Now let us consider the case of deleting too much data.  In 
Figure 4, we illustrate an EWMA control chart applied to 
the same data set as illustrated in Figure 1 except that we 
estimated 0μ  and 2σ  based on .10−= nd   As indicated 
in Figure 4, the centerline is close to the true centerline be-
cause we deleted the biased points.  In addition, we can see 
that the proportion of points that fall within the control lim-
its is high; however, the estimators for 0μ  and 2σ  will not 
be as good as in the case of Figure 1 because we have only 
used 10 data points to form the estimates.  In fact, the con-
trol chart limits are wider than for the case illustrated in 
Figure 2. 
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Figure 4 : EWMA Control Chart ( 590=d ) 
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Consideration of all three figures indicates that there is a 
trade-off in the application of the control charts.  If the 
control chart is well-formed (centerline is estimated from 
non-biased data) then we can expect a high proportion of 
the data to fall within the control limits.  If the control 
chart is not well-formed (centerline is biased from included 
data), then we can expect a lower proportion of the data to 
fall within the control limits.  This motivates us to look for 
the smallest deletion point that trades-off the proportion of 
the data that is in control versus the amount of data deleted.   

3 DESCRIPTION OF THE APPROACH 

In our approach, we consider the proportion of the data not 
deleted that remains in control.  To be specific, we define 

( )dp2ˆ  to be the observed proportion of exponentially 
weighted data points falling within the control limits to the 
right side of deletion point, i.e. the observed proportion of 
the exponentially weighted data remaining after deletion 
that fall within the control limits.  Define an indicator vari-
able to indicate whether a exponentially weighted point is 
in control or not. 
 

  ( ) ( ) ( )[ ]
⎩
⎨
⎧ ∈

=
otherwise          0

, if           1 dUCLdLCLZ
dI i

i  (7) 

 
Therefore, ( )dp2ˆ  can be defined as: 
 

    ( )
( )

dn

dI
dp

n

di
i

−
=
∑

+= 1
2ˆ  (8) 

 
Notice that this observed proportion will depend on the 
choice of .d  Our procedure depends on understanding and 
then exploiting the properties of ( )dp2ˆ .   
 Figure 5 presents ( ) 2,,0;ˆ 2 −= nddp K for the same 
data set that was discussed in Figures 1-3.  Notice how in 
the figure, ( )dp2ˆ  starts out less than 1.0 for small values 
of d and slowing increases towards 1.0, as d  increases.  
We examined many such figures of ( )dp2ˆ  for a variety of 
bias shapes and a similar pattern was evident in most of the 
cases.  For cases with high lag-1 correlation ( 5.0≥ρ ), we 
began to see less of a monotonic pattern to the curve.  We 
examine the effect of high correlation in our experiments.  
While we do not, as of yet, have a formal proof of this pat-
tern, it is exactly this behavior that we will try to exploit in 
our procedure. 
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Figure 5: ( ) dvsdp .ˆ 2  

 
In fact, for this particular case 380* =d , we see that 

( )dp2ˆ  is very near 1.0 for 280>d .  The values of d  are 
based on the original ordering of the data.  This indicates 
the ( )dp2ˆ  can give us an indication of how to set d .  As-
suming that ( )dp2ˆ follows the monotonically increasing 
pattern as d  increases allows us to utilize a basic search 
procedure for determining the recommended deletion 
point.  We denote the recommended deletion point as rd .   

In our procedure, the user must specify the parameters 
for the EWMA control chart, λ  and L , and the user must 
provide the desired proportion of the exponentially 
weighted data remaining after deletion that fall within the 
control limits.  We denote this desired proportion as 2p′ .  
This is a relatively easy criteria for users to understand. 
Obviously, the user would want this proportion to be high 
after the deletion.  We examine the effect of setting this 
criteria on rd  within our experiments.  Our procedure then 
becomes finding the smallest d such that ( ) 22ˆ pdp ′≥ .  
Why the smallest ?d   There is an explicit trade-off be-
tween the bias in using ( )dY  to estimate 0μ  and the vari-

ance associated with using ( )dY .  As more data is deleted, 
the bias related to using ( )dY  to estimate 0μ  decreases, 
but the variance of ( )dY  increases.  Thus, there is an intui-
tive desire to delete as little of the data as possible.  Notice 
that because of the assumed monotonic property of ( )dp2ˆ , 
the search criteria ( ) 22ˆ pdp ′≥ , can be recast as a root find-
ing problem for ( ) 0ˆ 22 =′− pdp .  Therefore, we do not 
have to evaluate the entire function, ( )dp2ˆ .  In our proce-

dure, we use a simple binary search to find rd . 
Our procedure is as follows: 
 

1. Collect { }niYi ,,2,1; K=  and reverse the data 
2. Set 2p′ , λ , L  
3. nba ←← ,0  
4
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4. ( )⎣ ⎦2bad +←  
5. if ( ) 22ˆ pdp ′<  

   dbaa ←← ,  
  else 
   bbda ←← ,  

6. if ba =  return adr =  
else go to step 4 

 
We note that reversing the data makes a difference when 
applying the procedure since the sequence of iZ  will be 
different depending on the direction of application of the 
control chart.  With the direction of the data reversed, the 
early iZ  tend to be smoother because they tend to be based 
on unbiased data in the original data. 

Notice that in step 5, we compute ( )dp2ˆ  using equa-

tions (2-4), equations (7) and (8) with 0μ and 2σ  esti-
mated via equations (5) and (6). The procedure starts the 
search with an initial deletion point at 2n .  At each itera-
tion, the interval is reduced by half, depending on whether 
or not ( ) 22ˆ pdp ′< .  The limits of the search interval are 
updated based on whether or not ( ) 22ˆ pdp ′< .  When the 
interval has been reduced such that the lower limit equals 
the upper limit, we have found the recommended deletion 
point that meets the criteria.  Notice we use integer values 
within the search.  In addition to the above mentioned 
steps, one could also test the remaining data after deletion 
for initialization bias using Schruben’s initialization bias 
test.  See the description in Nelson(1992) for an easy to 
implement algorithmic representation of Schruben’s test.  
In the following section, we discuss our experiments to ex-
amine the quality of our procedure.  In addition, we discuss 
the results of our experiments. 

4 EXPERIMENTS AND RESULTS 

Our experiments involved two types of assessment.  First, 
we examined the behavior of the method over a set of ex-
perimental design points using data generated from the 
aforementioned data generating functions.  We then exam-
ined the performance of the procedure by applying it to the 
waiting times from a M/M/1 queue, a difficult test case for 
initialization bias detection procedures.  Table 1 presents 
the experimental factors and their levels.   

 
Table 1  Experimental Factors and Levels 

Factor Name Low Level High Level 
sample size 500 1000 

d* ratio 0.2 0.8 
shape 1: straight line 3: exponential 

variance 1 10 
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In the experiments indicated in Table 1, we varied the 
sample size (the number of data points generated), the per-
centage of the points having bias, the shape of the bias de-
terioration, and the variance of the generated points.  The 
shape indicated by 1 has a linearly decreasing bias until 

*d is reached.  The shape indicated by 3 has an exponen-
tially decreasing bias until *d is reached.  In Table 2, we 
present the average bias, variance, and mean squared error 
of the estimator based on 10 replications of datasets with 
20% of the data being biased .  As indicated in Table 2, the 
bias has been reduced and rd is near *d ; however, rd  

tends to be less than *d . 
 

Table 2: Results for nd ×= 2.0*  
 nd ×= 2.0*  
 n = 500, 100* =d  n = 1000, 200* =d  
 12 =σ  102 =σ  12 =σ  102 =σ  

 Avg. 
(s.e.) 

Avg. 
(s.e.) 

Avg. 
(s.e.) 

Avg. 
(s.e.) 

bias 0.019 
(0.015) 

0.054 
(0.056) 

0.004 
(0.008) 

0.019 
(0.047) 

var 1.029 
(0.026) 

9.910 
(0.225) 

1.009 
(0.021) 

10.348 
(0.174) 

MSE 1.031 
(0.026) 

9.941 
(0.229) 

1.009 
(0.021) 

10.368 
(0.173) 

rd  85.60 
(0.859) 

67.400 
(1.899) 

211.8 
(34.49) 

193.0 
(49.05) 

bias(q1) -0.011 
(0.017) 

-0.072 
(0.054) 

-0.006 
(0.008) 

-0.057 
(0.048) 

bias(q3) -0.005 
(0.019) 

-0.062 
(0.053) 

0.003 
(0.012) 

-0.043 
(0.056) 

bias(q5) -0.021 
(0.024) 

-0.007 
(0.065) 

0.013 
(0.012) 

-0.047 
(0.063) 

 
In Table 3, we present the average bias, variance, and 
mean squared error of the estimator based on 10 replica-
tions of datasets with 80% of the data being biased .  As 
indicated in Table 8, the bias has been somewhat reduced 
but still remains significant.  In addition, the trend for rd  

to be less than *d appears to be more strongly indicated. 
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Table 3: Results for nd ×= 8.0*  
 nd ×= 8.0*  
 n = 500, 400* =d  n = 1000, 800* =d  
 12 =σ  102 =σ  12 =σ  102 =σ  

 Avg. 
(s.e.) 

Avg. 
(s.e.) 

Avg. 
(s.e.) 

Avg. 
(s.e.) 

bias 0.135 
(0.021) 

0.620 
(0.130) 

0.027 
(0.020) 

0.338 
(0.093) 

var 1.031 
(0.036) 

10.421 
(0.239) 

1.027 
(0.035) 

10.380 
(0.340) 

MSE 1.053 
(0.038) 

10.957 
(0.335) 

1.031 
(0.035) 

10.573 
(0.380) 

rd  361.7 
(2.745) 

302.6 
(8.036) 

749.9 
(2.447) 

662.0 
(16.20) 

bias(q1) 0.058 
(0.020) 

0.446 
(0.130) 

-0.028 
(0.021) 

0.184 
(0.092) 

bias(q3) 0.002 
(0.017) 

0.152 
(0.138) 

-0.049 
(0.025) 

0.068 
(0.080) 

bias(q5) -0.008 
(0.020) 

0.031 
(0.114) 

-0.054 
(0.030) 

0.051 
(0.070) 

 
Figure 7 summarizes Tables 2 and 3 by providing 95% 
confidence intervals on the remaining bias for each of the 
factors/levels.  From Figure 7, we concluded that, as the 
percentage of biased data points increases, our methodol-
ogy is unable to adequately indicate the deletion point.  We 
found that our procedure tends to consistently underesti-
mate *d  and that this tendency is detrimental when there 
are a large amount of data points that are biased.  As we 
would expect, the procedure performs slightly worse as the 
variance is increased and for shape 1.  In shape 1, the bias 
lingers longer than for the exponentially decreasing bias 
function. 
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Figure 7:  95% Confidence Intervals on Bias 
 

As we have indicated, rd  tends to be underestimated.  In 
order to examine this effect, we shift rd  towards the right 
according to the formula ⎣ ⎦rdnq − , where the amount of 
776
shifting we tested was defined by q= 0.1, 0.3, 0.5.  Tables 
2 and 3 indicate the average bias remaining after these 
shifts.  Figure 8 provides the  95% confidence intervals on 
the remaining bias for each of the factors/levels for the 
case of q= 0.5.   As indicated in Figure 8, this shifting 
clearly improves the bias removal. 
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Figure 7:  95% C. I.’s on Bias for q= 0.5 
 

We also performed additional sets of experiments similar 
to those already presented except that the total amount of 
data generated was n = 10000 and n = 20000.  As indicated 
in Figure 8, our procedure has a difficult time removing the 
bias when a large portion of the data is biased.  In this case, 
all factors/levels remained the same.  Thus, we have sig-
nificantly more data points that contain bias for these sam-
ple sizes. 
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Figure 8:  95% C. I.’s on Bias for n=10K, 20K   
 

In addition to the previous experiments, we utilized our 
procedure to determine the deletion point for the mean 
waiting time in the queue for the M/M/1 queue.  We per-
formed two experiments with the queue utilization, 

8.0,2.0=ρ .  Each experiment was replicated 10 times for 
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20000 customers.  It is well known that the customer wait-
ing times are positively correlated for such queueing sys-
tems.  Thus, we decided to apply our method to various 
batch sizes to examine the effect of reducing the correla-
tion in the data.  Figure 9 and 10 present the results for 
batch sizes of 10, 100, and 200.   
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Figure 9:  95% C. I.’s on Bias, 2.0=ρ  
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Figure 10:  95% C. I.’s on Bias, 8.0=ρ  
 

In both cases show in Figures 9 and 10,  the bias appears to 
have been mitigated and that the batching appears to help 
the procedure, especially in the case of higher utilization. 

We performed additional experimentation that is not 
reported in this paper.  From all of our experimentations, 
we found the following. 

 
1. A large value for 2p′  is always better as long as 

no significant autocorrelation exists. This is pri-
marily due to the fact that ( )dp2ˆ  increases very 
quickly towards 1.0. 

2. When the proportion of the data that contains bias 
is reduced the procedure is better able to mitigate 
the bias.  When the proportion of the data that 
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contains bias is increased, the procedure is less 
able to mitigate the bias.  This is due to the ten-
dency of the procedure to consistently underesti-
mate *d .  From our investigation, the procedure 
underestimates *d probably due to the fact that 

( )dp2ˆ  tends to increase very quickly to 1.0. 
3. We also performed some preliminary experimen-

tation on λ  and the results indicated that a 
smaller value of λ  improves the estimation.  
Typical values for λ  in EWMA charts are be-
tween 0.05 and 0.10 and we found that this was 
appropriate in our preliminary experiments. 

4. For the larger values of 2σ  we found that the pro-
cedure was less able to mitigate the bias.  This has 
some interaction with the percentage of data that 
was biased.  As a larger portion of the data has 
bias, 2σ  tends to naturally be larger. 

5. Shape does have an effect on the results and there 
may be interactions between shape and the batch 
size factor. 

6. Autocorrelation in the data set is detrimental to 
the procedure; however, batching can be used to 
remove the autocorrelation.  There was some in-
dication that an “optimal” batch size may exist 
given the interaction with other factors, such as 
shape, variance, correlation, and λ . 

 
While the results presented here may appear negative, we 
are actually quite pleased with the results.  In fact, the most 
negative result, that the procedures tends to consistently 
underestimate *d , has us the most intrigued.  If in fact our 
recommended deletion point is close to but less than 

*d then we might be able to exploit this fact as a lower 
bound on *d .  An obvious augmentation would be to re-
apply the method after deleting the initially recommended 
data points, especially since our procedure performs better 
when there are less biased data points.  In addition, if we 
could find a good upper bound on *d then it might be pos-
sible to combine the lower and upper bounds to provide a 
better deletion point.  Although preliminary, the results for 
the M/M/1 are encouraging, especially since the shape of 
the sample path can vary significantly from what we have 
investigated to date. 

5 SUMMARY AND FUTURE RESEARCH 

In this paper, we presented a new method for determining 
the warm-up period in discrete-event simulation experi-
ments.  The method is based on the use of the exponen-
tially weighted moving average statistical process control 
charts.  This control charting technique is well known but 
has not been previously used for initialization bias detec-
7
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tion.  The control chart has useful capabilities for detecting 
small shifts in the process mean, which we felt would in-
crease its effectiveness when used for initialization bias de-
tection.  We developed a criteria, ( )dp2ˆ , the observed 
proportion of the exponentially weighted data remaining 
after deletion that fall within the control limits, that we ex-
ploited to determine the recommended deletion point.   

While a more rigorous theoretical basis for our proce-
dure is yet to be established, we show through our experi-
ments that out method shows some promise as a deletion 
point determination procedure.  It is easy to implement and 
relatively quick computationally.  The experiments indi-
cate that the procedure tends to under estimate *d , the true 
deletion point; however, this is not necessarily a bad situa-
tion.  We found, that as the procedure is currently applied, 
the procedure has difficulty discerning the bias when the 
bias is within the noise of the underlying process.  This 
tends to cause *d  to be underestimated, but if the bias is 
indistinguishable from the noise we probably have a rela-
tively unbiased estimate.  Thus, we would prefer to have 

*d  to be small, so as to improve the variance of the esti-
mator.   This tendency might be useful in developing better 
procedures based on our approach. 

Based on the results, we are excited about the possi-
bilities for future work in this area.  We plan to try to un-
derstand better some of the theoretical assumptions that are 
necessary to have ( )dp2ˆ  behave monotonically.  In addi-
tion, we have yet to exploit all of the theory that has been 
developed to set optimal parameter values for the EWMA 
chart.  The many possibilities for future research that we 
are considering include: 

 
1. Examining additional bias generating function 

shapes and their affects 
2. Utilizing response surface methods to optimally 

tune the parameters (e.g. 2,, pL ′λ ) of the proce-
dure across a wide variety of test cases.  These 
tuned parameter settings could be used as defaults 
when applying the procedure. 

3. Exploring further the effect of batching to reduce 
correlation when applying the procedure 

4. Comparing our procedure to other initialization 
bias detection procedures utilizing an experimen-
tal design and test case methodology 

5. Utilizing additional criteria during the search to 
improve the sensitivity of detecting bias, i.e. to 
push rd  closer to *d . 

6. Building on our procedure to develop a within-run 
procedure for determining the length of the warm 
up period 

 
We are especially interested in tackling items (5) and (6) and 
have already developed tentative procedures for those items. 
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APPENDIX: BIAS FUNCTIONS 

We used the following two functions to construct two 
initial bias patterns for our experiments: 
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Figure A-1: Diagram of Monotonically Decreasing Func-
tion 
 
We combined the function with an AR(1) process with 0 
autocorrelation (white noise), the time series plot is shown 
in Figure A-2 below. 
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Figure A-2: Time Series Plot of Monotonically Decreas-
ing Function 
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Shape 3: 
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Figure A-3: Diagram of Monotonically Exponential De-
creasing Function 
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Figure A-4: Time Series Plot of Monotonically Exponen-
tial Decreasing Function 
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