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Abstract

This paper examines the robustness of a standard model of multi-echelon inventory systems, specifically the models

discussed in Axsater (Oper. Res. 48(5) (2000) 686). A simulation model was developed to explore the model’s ability to

predict system performance for a two-echelon one-warehouse, multiple retailer system using (R;Q) inventory policies
under conditions that violate the model’s fundamental modeling assumptions. In particular, the impact of non-

stationary demand on this stationary demand inventory model was examined. The model performs well at the low

demand and large retailer order batch size situations, but our testing of the model indicated that care must be taken

when applying this model to situations that violate its fundamental assumption. These results should help practitioners

to better understand the assumptions of these models and to determine when or when not to apply these models in

practice. r 2002 Published by Elsevier Science B.V.
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1. Introduction

Efficient and effective management of inventory
throughout the supply chain can significantly
improve customer service levels and reduce system
cost. During the last decade, previous research has
led to the development of many analytical
inventory models, which can be embedded in
decision support systems to assist in inventory
management, such as those that are used in the
Enterprise Resource Planning, Supply Chain
Management, and Advanced Planning System

software tools. Most of the time, these models and
systems are treated as a black box in obtaining
solutions. Uncertainty in the real world could
cause the misuse of the models. Practitioners
should be careful when using these models and
should not ignore the uncertainty in the system
that could affect the model performance and cause
serious consequences to a company’s inventory
management strategy.
These inventory models are developed and

designed for a specific system based on certain
conditions and assumptions. The models should be
robust enough to be used under some unforeseen
situations. For example, a model may assume
Poisson demand for customer orders, but the
actual demand pattern shows non-Poisson char-
acteristics or seasonal trends. A robust model
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should still be able to provide accurate perfor-
mance prediction/approximation for the inventory
system even when the actual environmental con-
ditions have violated the modeling assumptions.
Demand and lead-time are two main conditions
that are easily affected by the randomness and
changes to environmental conditions. Therefore, it
is important to explore the robustness of inventory
models, and to study the impact of violations to
the demand and lead-time assumptions on the
model’s output. In addition, the knowledge gained
on the quality of the model’s outputs under
various violated conditions will help determine
when and when not to use these models in
practice.
This research focuses on testing the robustness

of a recent model of multi-echelon inventory
systems via computer simulation. The study
determines how the model performs under violated
assumptions and the conditions where the models
will perform the worst in predicting the system
performance measures. The model tested considers
a distribution network consisting of one ware-
house and N retailers, where the retailers directly
serve the customers and the warehouse replenishes
all the retailers. At each warehouse and retailer
location, when the inventory position (net inven-
tory on hand plus stock on order minus back-
orders) drops below the reorder point R; a
replenishment order batch size of Q is placed.
This type of inventory policy is relatively easy to
implement with the point-of-sales terminal and
transaction reporting systems. Many have sug-
gested using the continuous review (R;Q) inven-
tory control policy on the slow moving type A
items (Silver et al., (1998), Hopp and Spearman
(2000), Zipkin (2000), Axsater (2000), etc.).
Many models have assumed a probability

distribution with known parameters to represent
the demand process. The stationary Poisson
distribution has been widely used to model the
demand in inventory models; however, seasonal
type items, short product life cycles, and volatility
in the marketplace suggest that the probability
distribution of demand tends to change over time,
i.e. the demand is non-stationary. This paper will
examine the effects of violating the stationary
Poisson demand assumption of the model pre-

sented in Axsater (2000) with a simple non-
stationary Poisson demand process.
The next section provides an extensive review of

relevant literature, and is followed by the simula-
tion methodology and the experimental design
used in during our analysis. Then, the summary
of the experimental results with discussion is
presented. The last section concludes this paper
with recommendations and directions for future
research.

2. Literature review

Many early multi-echelon inventory models
have been used for military contingency support.
For example the work of Sherbrooke (1968) and
Muckstadt (1973) discusses how to control repair-
able items in military base-depot supply systems.
Since then, many other multi-echelon inventory
systems have been studied extensively, especially
for the service part inventory control system and
for the one-for-one base stock ordering policy (a
special case of the (R;Q) policy with Q ¼ 1). Of
note is the work of Cohen et al. (1986) which has
been successfully integrated into IBM’s OPTIMI-
ZER, a multi-echelon service inventory optimiza-
tion software support system, as described by
Cohen et al. (1990). IBM reported a savings of
over $250 million resulting from the use of their
OPTIMIZER software.
The continuous review (R;Q) policies two-

echelon system has also received tremendous
attention. A review of the development of the
two-echelon (R;Q) continuous review inventory
models is presented to motivate the identification
of a significant model for testing in this study.
Lastly, previous research related to the robustness
study of inventory models is presented.

2.1. Two-echelon (R;Q) inventory models

A good review of the models dealing with
continuous review policies for multi-echelon in-
ventory systems can be found in Axsater (1993a).
The traditional method focuses on the steady-state
behavior of the inventory levels, where the lead-
time demand is approximated by the mean and
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variance incorporated into a certain distributional
form. The multi-level system is decomposed into
single locations to be evaluated separately with
parameters that depend on each other. The total
cost function is obtained through the average
inventory and backorder units. Pioneering re-
search in this approach is Deuermeyer and
Schwarz (1981), Moinzadeh and Lee (1986), Lee
and Moinzadeh (1987), and Svoronos and
Zipkin (1988). Svoronos and Zipkin (1988) pro-
vided several refinements and extensions to the
work developed in Deuermeyer and Schwarz
(1988). The approximation method of Svoronos
and Zipkin (1988) has been shown by Axsater
(1993a, b) to be accurate for the identical retailer
case.
As opposed to the traditional approach, Axsater

(1993a, b) suggests several approximation meth-
ods. These approximations are derived based on
the previous work of Axsater (1990), which used a
recursive procedure for the evaluation of one-
warehouse and N retailers with one-for-one
policies. The holding and backordering costs must
be functions of the delay experienced by the
customer. His numerical results show that his
approximations provide good results that are
comparable to that of Svoronos and Zipkin
(1988). Following this line of research, Axsater
(1998), Forsberg (1996), and Forsberg (1997)
developed models to evaluate the non-identical
retailers case.
Since previous models by Axsater and Forsberg

are based on the weighted average costs for one-
for-one policies, the models are limited to pure
Poisson demand processes only and rely on a
special cost structure. In Axsater (1995), he began
to investigate the steady-state behavior of the
inventory levels, and in Axsater (2000), he
provides an exact analysis through determining
the complete probability distributions of the
retailer inventory levels in steady state. This model
uses a common cost structure and the model can
be used to solve the one-warehouse and non-
identical retailer case with compound Poisson
demand. This model is considered the state-of-art
in exactly evaluating two-echelon inventory sys-
tems with continuous review (R;Q) batch ordering
policies for the low demand items such as spare

parts. Therefore, the Axsater (2000) was selected
for testing in this study.

2.2. The robustness of inventory models

Some previous studies have been performed to
test the robustness of inventory models directly
and indirectly. Many studies are performed on
single location inventory models. The work of
Naddor (1978), Fortuin (1980), Banks and Spoerer
(1986), and Lau and Zaki (1982) concludes that
the optimal inventory decisions of single location
inventory models are affected more by the means
and standard deviations of the demands rather
than the form of the demand distribution. Ty-
worth and O’Neill (1997) examine the use of the
normal approximation in determining the safety
stock for the (R;Q) continuous review inventory
models. By comparing the solutions (safety stock,
total cost and fill rate) from the normal approx-
imations and exact approaches, they found that
the normal approximation method is robust across
seven industry groups (fast-moving demand
items). Nevertheless, Fotopoulos et al. (1988)
present a method to determine the safety stock
when the demands are autocorrelated and the
lead-times are random. Their numerical results
show that ignorance of autocorrelation in demand
could provide severe errors when determining the
safety stock; however, the effect of non-normal
demand was found to be relatively small.
The above studies were all concerned with

single-echelon inventory models. The only study
that we found which examined the behavior of
multi-echelon models under violated model de-
mand assumptions was performed by Lagodimos
et al. (1995). They tested the robustness of two
two-echelon (serial) periodic review order-up-to-S
inventory models. The independent identically
distributed normal demand assumptions were
violated with stationary autocorrelated demand
processes. Lagodimos et al. (1995) performed their
analysis using an analytical approach in which the
model parameters were redefined to fit any
stationary autocorrelated normal demand process
in an exact closed form. Their results demonstrate
that the models, when ignoring the effects of
autocorrelation, might provide significant error in
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predicting system performance depending on the
overall system parameters settings.
Tee and Rossetti (2001) proposed using simula-

tion to evaluate the robustness of a two-echelon
inventory model. The model presented in Axsater
(2000) was tested under stationary non-Poisson
demand and non-constant lead-time conditions
using simulation methods. The effects of the
variability of the demand and the lead-time were
evaluated via Gamma distributed time between
demands and lead-time with different coefficients
of variation. The results showed that if the testing
conditions are ignored when using the analytical
multi-echelon inventory model, then significant
error in predicting the inventory system perfor-
mance can be obtained. The testing conditions
influenced the prediction of the number of back-
orders the most, and the number of backorders
tends to be under-predicted due to the increase of
demand and lead-time variability. The error in
predicting the expected number of backorders is
the main factor which influences the errors in
predicting the total system cost, and the error is as
much as 34% over and 40% under the actual
system cost.
Considering an item that uses exponentially

weighted moving average demand forecasting
techniques, Graves (1999) incorporated non-sta-
tionary demand into a single-item inventory model,
and further extended the model into a two-stage
inventory system. Based on numerical observations,
more safety stock was needed when the demand is
non-stationary. He also observed that the demand
process at the upper stage is more variable when the
downstream stage experiences non-stationary de-
mand, which is the so-called bull-whip effect.
Based on this review of the literature, we

conclude that while much research has been done
on multi-echelon inventory models, the robustness
of these models remains to be examined. Many
models assume simple stationary demand pro-
cesses. The typical time dependent demand found
in practice should not be forgotten when using
these inventory models. Thus, we examine if
significant errors in estimating the inventory
system performance will occur under the non-
stationary demand circumstances and the overall
robustness of these models.

3. Methodology

The purpose of this study was to assess the
quality of the model presented in Axsater (2000)
based on how the model’s prediction of inventory
system performance compared to the true value
when the assumptions are violated. A simulation
model was used to provide the true system
performance under the violated modeling assump-
tions. Our research methodology is as follows:
First, the Axsater (2000) model is used to obtain
the recommended optimal policies and the pre-
dicted values of the system performance measures.
Then, a simulation model was developed to
incorporate the model testing conditions. The
simulated performance measures are compared to
the model’s predicted values under a design of
experiments for robustness analysis.

3.1. Problem setting

The Axsater (2000) model was obtained in a
prototype program available via contact with Sven
Axsater (E-mail: sven.axsater@iml.lth.se). We
decided to analyze only the identical retailer case
for a simpler and clearer analysis of the two-
echelon system. Previously, Svoronos and Zipkin
(1988) provided an accurate approximation for the
identical retailer system with 32 test problems. In
these 32 test problems, the demand was assumed
to be a stationary Poisson process at the retailer
level, and all the holding cost factors (hr ¼ hw) are
$1 per unit and transportation lead-times are 1 day
for all cases. The factors and levels of these 32 test
problems are shown in the Table 1.
We used the Axsater (2000) program to solve

the 32 test problems, and the inventory system
performance estimation and optimal inventory
policies obtained are not significantly different
from the results given in Svoronos and Zipkin
(1988). The performance measures of interest are
the expected inventory on-hand across all the
retailers (Ir), the expected number of back-
orders across all the retailers (Br), the expected
inventory on-hand at the warehouse (Iw), and the
expected total system cost. The total cost equals
warehouse inventory holding cost (WIC)+all
retailers inventory holding cost (RIC)+all retailers
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backordering cost (RBC), where the WIC, RIC,
RBC are obtained from the Iw; Ir; and Br with the
holding cost factors (hr ¼ hw), backordering cost
factor (Pr), and the number of retailers (N). All
these values are used as the baseline for testing and
comparison. The recommended inventory policies
(the reorder points of warehouse and retailers) are
used as simulation inputs.

3.2. Simulating the non-stationary Poisson demand

A simulation model was developed to represent
the two-echelon inventory system represented by
the analytical model. Tee and Rossetti (2000)
presents the details of the simulation model
including the logic, structure, data inputs, outputs,
verification, and validation. The simulation model
built in this study is simple and easy to use, and the
model can be modified to accommodate other
distribution systems. A single location model was
first built and then expanded into a warehouse-
retailer model in Arena 5.0 Professional Edition.
The simulation models were verified and validated
to give performance measures that are an accurate
and valid representation of the system.
The main testing condition for this study is the

non-stationary Poisson demand process. A piece-
wise-constant arrival function with two rates over
the year was chosen to model the non-stationary
characteristics of the demand pattern. The demand
process is assumed to have a lower than average
demand for the first half-year, and higher than

average demand for the second half-year, and then
it repeats in a yearly cyclical pattern. We felt that
such a cyclical demand pattern would be sufficient
to evaluate the performance of the stationary
analytical model under the time-dependent de-
mand situation. Furthermore, the Arena simula-
tion software provides an easy way to generate
such non-stationary Poisson demand process
through the built-in ‘SCHEDULES arrival’ ele-
ment. The method behind this SCHEDULES
arrival element is via the inversion of a stationary
rate-one Poisson process against the cumulative
rate functions as described by Law and Kelton
(2000).

3.3. Experimental design

With the simulation model and the recom-
mended inventory policies from Axsater (2000),
we examined the 32 test problems under the non-
stationary Poisson demand scenarios. Table 2
shows the violated demand conditions for the
two different demand rates in the 32 test problems.
For example, if the test problem has an average
demand rate of 1 item per day, the simulation
model will run at average demand rate of 0.5 items
per day for the first 6 months, and then 1.5 items
per day for the next 6 months. This represents a
time-weighted yearly demand of 1 item per day.
According to Needham and Evers (1998), an

inventory system is a non-terminating system and
one must design the experiment to evaluate the
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Table 1

Experimental factors and levels for the 32 test problems

Factors Symbols Levels Level

Average demand D 2 Low—0.1 unit demand per period

High—1.0 unit demand per period

Number of retailers N 2 Small—4 retailers

Large—32 retailer

Backorder cost factor Pr 2 Small—$5 per unit backordered

Large—$20 per unit backordered

Retailer order quantity Qr 2 1 unit

4 units

Warehouse order quantity Qw 2 1 Qr batch-unit

4 Qr batch-units
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mental design analysis of a simulation model must
provide sufficient independent observations to do
statistical tests and to obtain statistical signifi-
cance. The batch means method was used for this
steady-state estimation. Initial inventory on-hand,
on-order, and backordered at each location were
set to zero for the simulation model, and these
conditions could cause initialization bias. Welch’s
plot procedure as described in Law and Kelton
(2000) was used to determine the warm-up period.
Since the performance measures for the inven-

tory system will not be independent of time when
the demand process is non-stationary, statistical
analysis for steady-state cycle parameters estima-
tion was used. A discussion of steady-state cycle
parameter estimation is available in Law and
Kelton (2000). Since the non-stationary pattern
repeats on a yearly cycle, the cycle was determined
to be 1 year and observations were collected for
each year. For example, we let Yi be the average
inventory level during year i: We are interested in
estimating the steady-state mean of Yi; E½Yi�: The
steady-state distribution of the yearly performance
should still exist even though the system is non-
stationary. No initialization bias was observed
when estimating the steady-state mean perfor-
mance on a yearly basis so that no warm-up period
was needed for this non-stationary demand
simulation. Thirty batches of 1 year was found
to be enough to ensure independent and identically
distributed data for a 95% confidence level and a
confidence interval width of 1.41 for the average
annual total cost measurement was obtained. This
design of experiments retains the original 25

factorial experiment (the 5 factors in Table 1) with
32 design points.
To measure the robustness of the model in

predicting the performance of the system, the
deviation (error) of the model-predicted values
from the actual true values (simulated values) are
needed for comparisons. If the error is a positive
number, the model over-predicts the system, which
means the actual value is lower. If the error is
negative, the system performance is under-pre-
dicted implying that the actual value is higher.
Since each test case has different conditions with
certain recommended inventory policies, the per-
formance measure values are not the same for each
case. The error will show how much the prediction
is off from the actual value, but it will not tell how
sensitive the differences are. The relative error is a
response that can be used to indicate the relative
differences. The relative error is defined as the
following:

Error ¼Model Prediction Value

�Actual Simulated Value;

Relative Error ¼ Error=ðActual Simulated ValueÞ:

Nevertheless, the relative error has a disadvan-
tage, which is the over sensitivity of this measure.
When the response results in small performance
measure values, little deviation will give a high
relative error. The error and relative error of the
average total cost are the main responses used in
the statistical analysis of the factorial experiments
in this study. Analyses on other performance
measures such as the average number of back-
orders and average inventory levels were also
performed to study the tradeoff between the
components of the average total cost.

4. Experimental results and discussion

Each of the 32 design points has 30 observations
(replicates) from the 30-batch simulation runs,
yielding a total of 960 estimates of each perfor-
mance measure. Table 3 reports the summary
statistics of the error and relative error in
predicting performance measures under the non-
stationary Poisson demand condition from all the
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Table 2

Non-stationary Poisson demand process

Piece-wise constant rates:

2 periods

per year

Demand (D ¼ 0:1) Demand (D ¼ 1:0)

Rate

per day

Average Rate

per day

Average

Period #1 0.05 0.1 0.5 1

Period #2 0.15 0.1 1.5 1
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simulation observations (across all experiments).
The summary statistics include the sample mean,
sample standard deviation, maximum, upper
quartile, median, lower quartile, minimum, and
sample size.
The summary statistics demonstrate that all the

performance measures except the Ir are under-
predicted for the non-stationary Poisson demand
conditions, i.e. all the mean errors, mean relative
errors, and 75% or more of the data are negative.
The overall statistics also indicate that the Ir has
the least mean and smallest variation of error
(mean=0.0086, std. dev.=0.0592) and relative
error (mean=0.0045, std. dev.=0.0382). On the
other hand, Br relative error has the most variation
with mean of �0.2954, standard deviation of
0.2843, maximum of 1.2727, and minimum of
�0.7713.
In order to examine the risks associated with the

model, we examined the probability that outputs
from the model will be greater than 10% in
absolute relative error when compared to the true
value. Table 4 shows the summary of absolute
relative error risk from the experiments by
counting the number of times the absolute relative
error was greater than 0.1 and then dividing by the
sample size of 960. The table also includes the
probability when the average demand rate is low
(D ¼ 0:1) and high (D ¼ 1:0) each with 480
samples to show the significance of the demand
factor. As shown in Table 4, 72.29% of the

experiments had relative errors greater than 10%
as compared to the true value of the Br across both
demand conditions. The percentage is even higher
for the high demand case, 99.79%. Again, the Ir
was determined to have the least risk as shown in
Table 4, 2.71% of the experiments had a relative
error greater than 10% from the true mean. In
general, Table 4 indicates that the model has a
high risk of performing poorly for the prediction
of cost, Br; and Iw; and the risk of poor
performance is worse when the demand rate is
high (more than 90% of the cost and Br

experimental values have large error).
After analyzing the overall summary statistics,

exploratory plots of the average relative error
values of the 32 design points (Fig. 1) were used to
check for patterns in each performance measure.
As shown in Fig. 1, the relative error of the cost,
the Br; and the Iw seem to have similar patterns
(same signs and similar trends). Nevertheless, the
relative errors of Ir are smaller (all less than 10%),
and the Ir’s pattern tends to have the opposite sign
with respect to the other performance measures
especially at the last few design points. In other
words, most of the performance measures are
observed to be under-predicted most of the time,
but the Ir is over-predicted. The exploratory plots
also show that all the errors are smaller when the
demand is low (design points 1–16).
To further investigate the effects of the errors in

Iw; Ir; and Br on the total system cost, the
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Table 3

Overall performance measures error and relative error summary statistics

Summary

statistics

Average total cost Average retailer

backorders (Br)

Average warehouse

inventory (Iw)

Average retailer

inventory (Ir)

Error Relative

error

Error Relative

error

Error Relative

error

Error Relative

error

Mean �10.1231 �0.1426 �0.0465 �0.2954 �1.3053 �0.1989 0.0086 0.0045

Std. dev. 16.0065 0.1385 0.0535 0.2843 2.1167 0.2626 0.0592 0.0382

Maximum 2.2430 0.2055 0.0895 1.2727 1.9960 0.6005 0.3187 0.1957

Upper quartile �0.4090 �0.0269 �0.0025 �0.0517 0.0000 0.0000 0.0317 0.0508

Median �2.2750 �0.1069 �0.0233 �0.3460 �0.2200 �0.1028 0.0028 0.0025

Lower quartile �15.8610 �0.2554 �0.0832 �0.5396 �3.0487 �0.3774 �0.0114 �0.0082
Minimum �59.5740 �0.4638 �0.2353 �0.7713 �6.0390 �0.7722 �0.3064 �0.1950
Sample size 960 960 960 960 960 960 960 960
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percentage of WIC, RIC, and RBC to the total
system cost for all the original cases and the
experiments were computed for analysis. Please
refer to Table 5 for the relationship among these
inventory system performance measures, and the
percentage change of the cost components. As
shown in Table 5, the direction of percentage
change of the RBC and RIC components from
original cases to experiments are always opposite
of each other, i.e. as the percentage of the RBC
increased (positive % difference), the RIC percen-
tage decreased (negative % difference). The
percentage change of the WIC cost component,

however, does not fluctuate as much since the
percentage differences are always less than or
equal to 5.5%. Based on the average percentage
across all the 32 original cases, RIC is the main
component of the total cost with 58%, followed by
RBC with 32%, and then WIC with 10%. After
the introduction of the non-stationary Poisson
demand into the experiments, the RIC percentage
of the total cost decreased 9–49%, RBC increased
8–40%, and WIC only increased 1–11%. RIC and
RBC are still the main components for the total
cost for most cases. As the Br was consistently
under-predicting more (negative error and relative
error), there are more backorders in the system
and hence the RBC percentage of the total cost is
increased. Therefore, together with the similar
patterns of the Br and total cost error and relative
errors as shown in the exploratory plots (Fig. 1),
this indicates that the error in predicting the Br is
the main driver for the total system cost change for
these experiments.
The main effect and interaction plots of the non-

stationary Poisson demand study were used to
analyze the sensitivity of the factors and interac-
tions graphically (to evaluate the behavior of the
analytical model). Most of the main factors are
found to significantly affect the errors and relative
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Table 4

Probability of error greater than 10% of the true value from

model prediction

Performance measures Probability (absolute

relative error >10%)

D ¼ 0:1 D ¼ 1:0 Overall

Cost 0.1000 0.9646 0.5323

Br 0.4479 0.9979 0.7229

Iw 0.2417 0.8292 0.5354

Ir 0.0500 0.0042 0.0271

Sample size 480 480 960
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Fig. 1. Exploratory plots of the average relative errors of each response.
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errors from the low to high level, except the main
factor Qw: Table 6 shows the effects of factor D;
Qw; and Qr on the relative errors. The D factor was
found to be the most significant: the cost, Br; and Iw
will be underestimated more (relative error is
larger) when changing from low to high demand;

when the demand is high the Ir relative error is
larger, but in this case Ir is overestimated more.
Another important observation is the effect of the
Qr factor. Smaller relative errors are found at the
larger retailer order quantity (Qr ¼ 4): cost, Br; and
Iw are underestimated less; Ir is overestimated less.
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Table 5

Cost components percentage change from original cases to experiments

Design point RBC/total cost RIC/total cost WIC/total cost

Original

(%)

Experiment

(%)

% Diff. Original

(%)

Experiment

(%)

% Diff. Original

(%)

Experiment

(%)

% Diff.

1 31.4 35.8 4.5 68.6 64.1 �4.5 0.0 0.0 0.0

2 13.1 15.8 2.6 64.5 62.2 �2.3 22.4 21.9 �0.4
3 4.2 5.6 1.5 95.8 94.4 �1.4 0.0 0.0 0.0

4 19.2 19.5 0.3 40.1 40.1 0.0 40.7 40.4 �0.3
5 77.8 78.1 0.3 0.0 0.0 0.0 22.2 21.9 �0.3
6 68.1 68.1 0.0 0.0 0.0 0.0 31.9 31.9 0.0

7 16.9 17.2 0.3 83.1 82.8 �0.3 0.0 0.0 0.0

8 28.9 29.8 0.9 45.6 45.9 0.2 25.4 24.3 �1.1
9 11.8 17.1 5.2 84.6 78.8 �5.8 3.5 4.0 0.5

10 14.0 19.5 5.5 83.1 77.2 �5.9 2.9 3.3 0.4

11 26.3 27.3 1.0 66.4 65.4 �1.0 7.3 7.3 0.0

12 26.1 26.8 0.7 63.9 63.1 �0.8 10.0 10.1 0.1

13 89.5 89.3 �0.2 0.0 0.0 0.0 10.5 10.8 0.3

14 87.2 87.2 0.0 0.0 0.0 0.0 12.8 12.8 0.0

15 16.9 17.1 0.3 83.1 82.8 �0.3 0.0 0.0 0.0

16 15.9 16.2 0.3 80.9 80.7 �0.3 3.2 3.1 0.0

17 23.9 46.7 22.8 64.4 43.3 �21.1 11.7 10.0 �1.7
18 29.8 52.1 22.3 60.6 39.9 �20.7 9.6 8.0 �1.5
19 12.5 26.5 14.1 79.6 65.8 �13.9 7.9 7.7 �0.2
20 13.2 24.2 11.0 68.6 59.4 �9.2 18.2 16.3 �1.9
21 42.3 54.4 12.1 48.1 35.5 �12.6 9.6 10.1 0.4

22 38.9 50.9 12.0 47.1 36.0 �11.1 14.0 13.1 �0.9
23 38.5 46.6 8.1 61.5 53.4 �8.1 0.0 0.0 0.0

24 35.5 40.9 5.4 40.2 36.9 �3.3 24.2 22.2 �2.1
25 23.0 50.8 27.8 74.3 43.4 �30.9 2.7 5.8 3.1

26 22.5 50.2 27.6 74.4 43.8 �30.6 3.0 6.0 3.0

27 23.6 41.7 18.0 70.8 51.4 �19.4 5.6 6.9 1.3

28 26.0 44.2 18.2 69.3 49.7 �19.6 4.8 6.1 1.4

29 37.2 53.0 15.9 59.7 38.3 �21.4 3.2 8.7 5.5

30 36.5 52.4 15.9 59.9 38.5 �21.3 3.7 9.0 5.4

31 32.5 42.8 10.2 62.5 49.0 �13.6 4.9 8.3 3.3

32 35.1 44.9 9.8 60.7 47.9 �12.8 4.2 7.2 3.0

Average 32 40 9 58 49 �9 10 11 1

Std. dev. 21.2 21.0 8.7 25.9 24.7 9.6 10.2 9.5 1.9

Min 4.2 5.6 �0.2 0.0 0.0 �30.9 0.0 0.0 �2.1
Max 89.5 89.3 27.8 95.8 94.4 0.2 40.7 40.4 5.5

Total cost=RBC+RIC+WIC

RBC=N �Pr�Br RIC=N � hr� Ir WIC=hw� Iw
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To further support that the model performs well
when D ¼ 0:1 and Qr ¼ 4; the probability of
relative error greater than 10% of the true value
for all four groups of D and Qr combinations was
computed. Table 7 shows that only 5.83% of the
total cost (sample size of 240) has error greater
than 10% of the true value when D ¼ 0:1 and
Qr ¼ 4: Even though Br has considerable high
probability (33.33%) of error greater than 10%
from the true mean, it is still the lowest compared
to the other three categories. The Iw also has the
smallest probability among the four groups of D

and Qr combination with 15.83%; however, the Ir
is not being predicted that well at D ¼ 0:1 and
Qr ¼ 4 with a probability of 0.1 (10%) when
compared with other groups.
In these experiments, similar results to the

previous research in Tee and Rossetti (2001) are
found. The violated assumptions affect the pre-
diction of Br (the expected number of backorders
across all the retailers) the most, and the error in
predicting Br is the most influential factor of the
total cost error. The Br as well as the total cost
tends to be under-predicted. The inventory policy
recommended by an analytical model depends
upon the tradeoffs between the cost components
under certain assumptions. Under the conditions
that have more demand variation and uncertainty
than the model assumed, the model will recom-
mend a policy of carrying less safety stock than is

needed, and hence more backorders occur and the
service level is reduced. If the actual demand is less
variable, less backorders will happen under the
recommended inventory policy, which means the
model over-predicts and influences the system to
carry more inventories.
The experimental results under the non-station-

ary Poisson demand process show that the model
does not perform well when the demand process is
non-stationary; however, the model is still within
an acceptable range when the average demand rate
is low (D ¼ 0:1) and the retailer order batch size is
large (Qr ¼ 4). The non-stationary Poisson de-
mand in this study designates the year duration
into two periods, one with a lower than average
demand and the other with a higher than average
demand, i.e. the demand variability over the year
is increased. When the demand is lower than the
average, the inventory system has more safety
stock in the first half period, and hence the
number of backorders is over-predicted. On the
other hand, higher demand increases the
number of backorders as the inventory system
has less safety stock, which leads to under-
prediction. Nonetheless, the overall results show
that Br is under-predicted in most cases, which
means that the over-prediction and under-predic-
tion during the whole year do not even out,
and the effects of under-prediction are much
higher.
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Table 6

The effects of factor D; Qw; and Qr on the relative errors

Factor Relative error Sign (7) Main effect plots: changes of mean value Remark

From low level To high level

D Cost � Under-predicted less Under-predicted more Smaller error at low demand

Br � Under-predicted less Under-predicted more

Ir + Over-predicted less Over-predicted more

Iw � Under-predicted less Under-predicted more

Qr Cost � Under-predicted more Under-predicted less Smaller error at high Qr

Br � Under-predicted more Under-predicted less

Ir + Over-predicted more Over-predicted less

Iw � Under-predicted more Under-predicted less

Qw Cost � Under-predicted Under-predicted Not much change, no effect

Br � Under-predicted Under-predicted

Ir + Over-predicted Over-predicted

Iw � Under-predicted Under-predicted

Y.-S. Tee, M.D. Rossetti / Int. J. Production Economics 0 (]]]]) ]]]–]]]10

PROECO : 2518



UNCORRECTED P
ROOF

While the average demand is low (D ¼ 0:1),
there is less fluctuation in the demand, and the
differences between the over-prediction and under-
prediction in a year are not as large. Therefore, the
model does not perform poorly when considering
the yearly performance (the over-prediction in the
first half period and under-prediction in the other
period balance each other out). The model will
perform even better when the retailer order
quantity is large. This is because when the order
quantity is larger, the replenishment order will be
placed less frequently, and hence there is less
chance for backorders to occur.
The prediction of the average inventory level at

the retailer is not significantly affected by the
introduction of higher or lower demand variance
given that the reorder point and order quantity at
the retailer are pre-specified by the model. On the
other hand, the error in the average inventory level
at the warehouse is affected significantly by the
testing conditions. A possible explanation for such
a phenomenon is that the violation of the
assumptions for the retailer demand processes
causes the warehouse to experience less of a
renewal process for replenishment orders. There-
fore, the model assumptions for the warehouse will
also be violated, and the error in the average
inventory level becomes more significant. There is,
in essence, a ‘‘bull-whip’’ effect that amplifies the
problems caused by the violation in the assump-
tions to the warehouse.

5. Conclusions and future research

This study evaluated the behavior of a (R;Q)
multi-echelon inventory model in predicting the

total system cost under a non-stationary Poisson
demand process. Assumptions such as Poisson
demand may be convenient for analytical model-
ing, but can be inadequate for some inventory
distribution systems. Neither the over-prediction
nor the under-prediction is good for a company
who uses these analytical models (see Table 8). If
the total system cost is over-predicted, the
company might hold too much capital for its
distribution system; capital that could be invested
elsewhere. If the total system cost is under-
predicted, the company might not have enough
capital to cope with the actual situation. Under-
prediction is considered to cause more serious
losses to the company because actual service level
is deteriorated (more backorders in the system),
and hence the profits may be reduced.
The simulation results of this study show that

the model had significant error in predicting the
total system cost (tends to be under-predicted)
when the actual demand is non-stationary Poisson.
The cost relative error ranged between 21% and
�46%. The error in predicting the backorders was
found to dominate the effects on the total system
cost with the relative error ranged between 127%
and �77%. The prediction of the average inven-
tory level at the warehouse by the model is also
shown to be not accurate, but its effect on the total
system cost is not large because the warehouse
inventory cost is only a small portion of the total
system cost. Moreover, the results find that the
model gives less error in predicting the average
inventory level at the retailer.
As a conclusion, the (R;Q) two-echelon inven-

tory model considered in this study has potentially
serious risks involved if used under non-stationary
Poisson demand conditions. Companies should be
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Table 7

Probability of error greater than 10% of the true value for D and Qr groups

Performance measures Probability (absolute relative error >10%)

D ¼ 0:1; Qr=4 D ¼ 0:1; Qr=1 D ¼ 1:0; Qr=4 D ¼ 1:0; Qr=1

Cost 0.0583 0.1417 0.9292 1.0000

Br 0.3333 0.5625 0.9958 1.0000

Ir 0.1000 0.0000 0.0083 0.0000

Iw 0.1583 0.3250 0.6583 1.0000

Sample size 240 240 240 240
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aware of the possibility of non-stationary or
seasonality of the demand while using analytical
inventory model designed for stationary situa-
tions. Although the model performs well at the low
demand and large retailer order batch size situa-
tions, the robustness of the model over all
conditions tested is in doubt. We recommend that
practitioners evaluate the potential use of multi-
echelon methodologies in a simulation study
before implementation.
In this study, the effects of the violated

conditions on the optimal inventory decisions
were not investigated. The optimal policies re-
commended by the model would more likely be
sub-optimal or not optimal under the uncertain
conditions. We could examine ways to use the
model even though the model assumptions are
violated. For example, an algorithm can be
designed to re-optimize the inventory policies
when the demand condition changes, i.e. a more
efficient way to control the inventory by an
adaptive procedure. Treharne and Sox (1999) have
reviewed models and methods for adaptive in-
ventory control. There are potentially significant
cost savings and benefits with the use of adaptive
control policies under changing environmental
condition. It is our hope that this research will
spark an interest in developing more robust
models for inventory control.
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