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ABSTRACT 

Inventory record errors within a supply chain can lead to problems that cause low 

customer satisfaction and high operational costs. In this paper, we present a simulation 

model of a two-echelon inventory system consisting of a retailer, a distribution center, 

and a supplier that includes multiple item types and the use of cycle counting as the 

corrective action. An extensive set of cycle counting configurations were examined while 

observing the trade-off between fill rates, accuracy, and system costs in order to 

investigate the best possible configuration of cycle counting for two set of experiments 

that examine high demand-low cost and low demand-high cost items. The results indicate 

that the correct application of cycle counting will increase record accuracy and provide 

significant amount of savings for the entire supply chain. 
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1. Introduction 

 Inventory accuracy is one of the key performance measures for retail stores 

that monitor inventory transactions on a continuous basis; however, most retail stores 

have major inventory accuracy problems (DeHoratius and Raman, 2006). The errors 

within the inventory records can lead to problems in supply chain management such as, 

insufficient organizational planning and replenishment decisions, causing low customer 

satisfaction and high operational costs. Inventory record inaccuracy is caused by the 

difference between the actual and the recorded inventory. If an individual inventory 

record does not match with actual inventory, this reveals the discrepancy which is the 

difference between recorded and the actual inventory in units. Since a record can be 

either accurate or not, the inventory record accuracy can be calculated as (Brook and 

Wilson, 1995).  

%100×=
CheckedecordsRofNumber

ecordsRAccurateofNumberTotalAccuracySKUOverall  

The most systematic method of solving inventory accuracy problems, cycle 

counting, is a well-known approach used to manage inventory inaccuracy (Young and 

Nie, 1992). It is simply the planned continuous counting of a small set of items during a 

period.  The objective of cycle counting is to determine errors in the process, as well as 

identify causes for inventory inaccuracy and provide improvement in customer service 

levels by making the in-store operations more effective (Piasecki, 2003). Muller (2003) 

emphasized another objective of cycle counting as to provide at least 95% accuracy on all 
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items. The overall goal of cycle counting is defined as improving inventory accuracy 

(Piasecki, 2003).   

Most companies utilize this technique to achieve better inventory control in their 

business. Although applying cycle counting decreases or removes a considerable amount 

of inaccurate inventory costs; it is also an additional cost. Civerolo (1996) emphasized 

the importance of implementing cycle counting in a correct way. Applying cycle 

counting in a correct way ensures remarkable improvement in the accuracy, whereas 

incorrect implementation may lead to critical problems due to added variation in the 

process. Therefore, it is necessary to use this approach as effectively as possible; 

otherwise, the cost of applying cycle counting can be higher than the benefits to be 

gained. 

  One of the main contributions of this research is taking into account the cost while 

varying the frequency of the process. We study the best configurations of cycle counting 

with respect to its cost and benefits to a retail supply chain. This is important because 

accurate inventory records leads to better customer satisfaction via higher product 

availability, a more effective replenishment process, and an improvement in the overall 

supply chain performance. This research models the retail supply chain with a simulation 

model of two echelon inventory system consisting of a supplier, a distribution center 

(DC), and a retailer with a set of SKUs to cycle count at the retailer. Figure 1 illustrates a 

simple multi-echelon inventory system.  
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Figure 1 A Simple Multi-echelon Inventory System 

We extended the model in Rossetti et al. (2007) by considering a set of items with 

transportation between inventory holding points (IHP) instead of a single item with no 

transportation cost. This enables an assessment of the total cost for all the items to be 

cycle counted. In addition, different configurations of cycle counting are taken into 

account. As a result, this research illustrates the positive effect of cycle counting in a 

supply chain by utilizing the system’s performance and cost measures.  

The remainder of this paper is organized as follows. Section 2 presents the 

relevant literature on inventory inaccuracy and cycle counting. Section 3 contains the 

details of the simulation model. Section 4 describes the experimental design and presents 

the results of simulation experiments in order to examine the benefits of cycle counting 

under different scenarios. Finally, Section 5 concludes the paper with a summary and 

directions for future work.  

2. Literature Review 

Previous studies on inventory accuracy commonly suggest that inventory 

inaccuracy should be minimized. However, most of the early work utilized analytical 

classic inventory models of single echelon inventory models to demonstrate the system. 

Iglehart and Morey (1971) formulated a cost function in a periodic review inventory 
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system which calculates the frequency of counts in order to minimize the total cost and 

ensure a sufficient buffer stock. Similarly Morey (1986) developed a cost function that 

can be easily implemented in a spreadsheet. The objective of the study was to minimize 

the total cost and reach the acceptable stock out level during the cycle count interval. 

Kumar and Arora (1991) also developed a model that determines the optimal values for 

cycle counting frequencies. In the single echelon inventory system with an (r, Q) 

inventory policy, they suggest that inventory miscounts should be minimized to increase 

customer satisfaction. Kumar and Arora (1992) extend their previous research by 

considering lead time variability. The relationship between the level of miscounts and the 

lead-time variability was studied to calculate reorder points. They suggest systematic 

audit activities to be applied along with taking into account lead time variability.   

Alternatively, simulation studies have been widely performed in the previous 

studies. Young and Nie (1992) proposed a single echelon inventory model that checks the 

costs of two different inventory policies, ABC and Economic Order Quantity (EOQ), 

under the effect of cycle counting. They examined the trade-off between cycle counting 

and non-counting based on the anticipated cost of various scenarios within the hospital 

industry. While cycle counting has significant labor cost, poor inventory accuracy results 

in stock-outs, which leads to excessive shipping and extra labor cost. They concluded that 

while making policy decisions, these costs should be taken under consideration in order 

to choose the optimum cycle counting frequency.  

DeHoratius (2006) examines a periodic review inventory process with unobserved 

lost sales caused by unrecorded demand, which is called, “Invisible demand”. A single 

SKU, at a single echelon was simulated to see the effects of discrepancy under three 
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different replenishment policies: “Full” a newsvendor policy assuming retailer knows the 

actual inventory, “Bayes” in which demand and the probabilistic inventory record are 

uncertain and updated with a Bayesian procedure and a “Naive” policy which assumes 

recorded inventory reflects the actual inventory. It was demonstrated that in order to get 

high service levels, the last two policies require higher inventory levels as compared to 

the “Full” policy.  

Inventory accuracy problems can occur in every echelon of a multi-echelon 

inventory system instead of at a single echelon only. Therefore, considering the total 

supply chain may give better insights concerning the system. Multi-echelon inventory 

systems have been broadly studied in the last decade (Fleisch and Tellkamp, 2005, Kang 

and Gershwin, 2005, Rossetti et al., 2007). Fleisch and Telkamp (2005) presented a 

simulation model for a three echelon inventory system with one product. Various factors 

causing inventory inaccuracy were examined where theft is shown as the factor having 

the most negative impact on the performance measures. They studied several values of 

these factors and identified the different impacts on supply chain monetary and non-

monetary performance measures for two cycle counting policies. In the first base case, 

inventory inaccuracy was not corrected at any time. In the second case, at the end of each 

period they eliminate the inventory inaccuracy and investigate the effect on the same 

performance measures. In contrast to the periodic review policies used in their research, 

we model a two-echelon supply chain that uses continuous (r, Q) inventory policies.  

Similar to our study, Kang and Gershwin (2005) utilized (r, Q) inventory policies 

with two specific inventory systems as stochastic and deterministic. Stock loss, 

transaction error, inaccessible inventory, and incorrect product identification are 
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identified to be the main causes of discrepancies. Both stochastic and deterministic 

simulation models were developed that emphasized the examination of system behaviors 

under corrective actions and stock-loss error. Moreover, they represent different 

compensation methods for controlling the error such as safety stock, manual inventory 

verification, manual reset of the inventory record, constant decrement of the inventory 

record, and Auto-ID. The study revealed that if no correction is done, even a small error 

can cause big impacts on system performance.   

Rossetti et al. (2007) constructed a simulation model to illustrate the effect of 

inventory inaccuracy within a supply chain. Cycle counting was used as the corrective 

action of the incorrect replenishment decisions made on incorrect inventory records. Two 

cases were modeled with the simulation. In the first case, learning effects were modeled 

which demonstrates the impact of learning from cycle counting and having less inventory 

record errors. In the second case, non-compliance was studied.  In this situation, one of 

the IHPs does not follow the cycle counting policy. The results indicate that average 

system fill rate decreases when error exists. When learning effect is introduced to the 

system, fill rate increases in both cases and when IHPs do not follow cycle counting 

average system fill rate decreases. As a result, it is shown that cycle counting is not just 

increasing inventory record accuracy, but also provides benefits for the supply chain 

network. 

The literature commonly indicates that inventory record inaccuracy should be 

minimized to improve customer satisfaction and to decrease total supply chain costs. A 

general approach is to utilize cycle counting. One of the areas explored in our research is 

the cost of applying cycle counting. Although Fleisch and Tellkamp (2005), and Morey 
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(1985) discuss the costs of cycle counting, they considered only one item in their models.  

In addition, they did not consider the transportation between IHPs and did not tabulate 

the accuracy. This research extends the model developed in Rossetti et al. (2007) in 

various ways. The most important extension is the examination of multiple item types in 

the system as well as a more general amount demanded process. In addition, 

transportation activity between the retailer and the DC is modeled in a detailed way rather 

than considering transportation just as a deterministic delay. Because, we have multiple 

item types, the model is able to provide the accuracy and discrepancy measures for the 

retailers across the item types. We know of no other models in the literature that allow 

this calculation.  Moreover, the total supply chain costs are included in the model in 

addition to supply chain performances (e.g. system fill rates).  The model is able to 

examine different cycle counting configurations while taking into account the trade-off 

between fill rates and system costs. Thus, the potential exists to use this model to 

determine the best possible configuration of cycle counting given a set of SKUs to cycle 

count.  

With this motivation, this research illustrates the positive effect of cycle counting 

in a supply chain by utilizing the system’s performance and cost measures. We develop a 

multi echelon inventory system given a set of SKUs to cycle count for a store to examine 

the various configuration of cycle counting while considering the trade-off between fill 

rates, accuracy, and system costs. In the next section, the research methodology for 

building the model is presented.  
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3. Simulation Modeling 

The system under study covers the supply chain starting from the retailer level 

through to the supplier. Under an (r, Q) policy the basic model consists of a supplier, DC, 

and a retailer. Each inventory holding point follows the same type of inventory policy. 

Each demand at the retailer consists of a random amount of request for a given type of 

item.  

Once a demand occurs at the retailer, the model first checks the actual-on-hand 

inventory assuming that the customer can see the shelves in the store. If actual on-hand 

inventory is enough to satisfy the demand, the customer demand is filled and the recorded 

on-hand is updated. This occurs when the customer arrives at the counter to checkout. 

Every time a customer demand occurs, the system updates the inventory position 

(inventory on-hand + on-order) and when the inventory position (IP) falls under the 

reorder point a replenishment order is sent to the DC. At that time, two scenarios can 

occur: In the first, the recorded on-hand is not enough to satisfy the demand indicating a 

discrepancy. This indicates to the system that there is an opportunity to correct the 

records (opportunity count). If the IP is less than or equal to the reorder point, the system 

does not wait to complete the opportunity count to send an order. In the second scenario 

the recorded inventory is also enough to satisfy the demand. This time the system checks 

the IP directly without an opportunity count. Similarly, a replenishment order is placed if 

the IP falls under the reorder point. Moreover in the situation of lost sales, where actual 

on-hand inventory is not enough to satisfy the demand, the amount that is not filled is 

considered as lost sales at the retailer (partial fulfillment). The system then checks the 
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recorded inventory and the steps mentioned above are followed similarly for both 

discrepancy scenarios. (Figure 2)  

The orders at the retailer are sent directly to the DC. The DC is assumed to have 

neither error nor cycle counting in this study. Thus, the DC checks only the recorded on 

hand inventory. If the recorded on hand inventory is not enough to satisfy the demand, 

the entire order is backordered, and the retailer waits for the replenishment from the 

supplier. Otherwise, the order is filled and the system updates the IP to decide whether to 

send an order to the supplier or not. Trucks perform scheduled deliveries from the DC to 

retailer. Finally, customer demands are filled from the retailer. 

 
Figure 2 Retailer System.  

3.1 Error Modeling 

Two main errors can occur in this system: Stock loss error and transaction error at 

the retailer level. Although both error types can occur at any level, we consider the DC as 
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essentially being accurate. The reason for this assumption is that the best practice for DC 

operations requires cycle counting and often results in accuracies over 99%. Stock loss 

error, described as the unrecorded loss of inventory because of shrinkage, destruction, 

theft, etc tends to occur more often at the retailer level due to theft and other causes 

(Kang and Gershwin, 2005). Transaction errors are the errors that occur when the retailer 

receives any shipment from the DC (suppliers) that may have discrepancies. These types 

of errors are typical mistakes (typos, misprints, miscounts…etc.) associated with the 

transactions (Kang and Gershwin, 2005).  

The probability of stockloss error for each item type has the same distribution 

with the probability of demand for the corresponding item type. The underlying 

assumption is; the more the demand for an item, the higher the probability of having 

stockloss error due to theft. The amount of the loss is a Poisson distribution with a mean 

proportional to the demand rate. Mean stockloss quantity is determined as a percentage of 

the mean total demand that should occur until the stockloss event. Let i be the item type. 

Then stockloss amount is calculated as: Poisson ((Mean Total Demanded (i) * Stockloss 

Percentage). Since it is not possible to lose more than actual on-hand inventory, the 

amount of stock-loss is set to the actual on-hand inventory, when the stock-loss error 

quantity is greater than the on-hand inventory.  

Transaction error is modeled as series of probabilistic processes. The probability 

of transaction error occurrence does not depend on the item type. But transaction error 

amount depends on the level and the item type; different order quantities in each level 

cause different transaction errors. Transaction error occurs when the retailer is 

replenished by the DC. The probability of transaction error occurrence is modeled via 
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discrete distribution with a percentage assumed in order to get common industry accuracy 

levels. The amount of transaction error is calculated via a Poisson distribution with mean 

equal to a certain percentage of the order quantity. Since every item type has different 

order quantities, transaction error amount is dependent on item type.  

Poisson (Retailer Reorder Quantity (i)* Retailer Receipt Error Percentage))  

We have assumed the chance of occurrence of an unintentional gain or loss as 

50% (Rossetti et al., 2007). 

3.2 Cycle Counting Modeling 

We consider two types of counting in our system: One is scheduled cycle 

counting, while the other is “opportunity counts” that occur when there exists an obvious 

opportunity to correct the records. The operation of the system can lead to two types of 

opportunity counts.  The first case happens when demand occurs while there is actual 

inventory on the shelf but the recorded inventory is not enough to fulfil the demand 

(positive discrepancy). In a physical retail environment, this situation presents an 

opportunity to correct the record, because the customer can actually see the items on the 

shelf. The customer demand is satisfied although the record would have indicated a lost 

sale; this presents an opportunity to correct the record. The second case involves the 

situation in which a demand arrives and there is not enough actual inventory on the shelf 

to satisfy the demand but the recorded inventory record is showing a positive balance 

(negative discrepancy). In this case, it is impossible to fill the customer demand fully 

because there is not enough stock available. This situation leads to lost sales although 

records would have shown the opposite. In our system, these opportunities for counting 

are noted until enough item types indicate that opportunity counts are available. This 



 

 13 

method allows us to take advantage of economies of scale when counting more than one 

item type. For scheduled cycle counting, the correction of inventory records occurs only 

when a cycle count is performed regardless of opportunity counts.  

Both counting types utilize a learning curve to model the reduction in the errors 

via cycle counting.  Mathematical equations with a logarithmic approach were developed 

to model this learning effect as a reduction in the annual rate of stock loss error arrival. 

The learning curve formula is modified as: 

 

Where    = Annual arrival rate of the errors  

    = Annual arrival rate at the beginning of the simulation 

   b    = (Log of the learning rate)/ (Log2) = slope of the learning curve 

Assuming a learning rate of 85%, b = -0.322 

Thus; as the number of cycle counts increase the annual rate of arrival of the 

errors decreases. This rate is then converted to the time between arrivals by using the 

formula 

  

3.3 Demand Generation 

The time between arrival of demand is assumed to follow an exponential 

distribution; hence the demand process is a Poisson distribution for the retailers. In the 

model, we have 12 different item types having different demand rates. A discrete 

distribution with different probabilities for each item type was utilized to select the item 

type for the corresponding demand. After the customer arrival and item type selection, 
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the amount of each demand is required to be identified. A lognormal distribution was 

selected as the amount of demand. The demand rate also drives the unit cost of the 

specific item type. In general, inventory systems of consumable items include high 

demanded and low unit cost items. We assume that the higher the demand, the lower the 

cost and vice versa. Therefore, demand rate and unit cost are inversely proportional.  

Since each item type has different demand characteristics, we needed to calculate 

the policy parameters for each item type. If the parameters are not set to optimal values, 

then it will be difficult to interpret the effect of other factors within the model. For 

example, the system which is set to carry more inventory than it is supposed to will hide 

the effects of errors. Arena’s OptQuest was utilized to find policy parameters for the item 

types.  The optimization model for OptQuest was setup to determine the policy parameter 

values that minimize the ordering, holding, asset, and transportation cost subject to 

providing 90% fill rate at the retailer and at the DC. OptQuest for Arena is an application 

that changes model inputs and then runs a sequence of simulations to find a combination 

of these inputs that appears to be optimal based on output performance. OptQuest utilizes 

Tabu Search as its basic meta-heuristic approach. For more details about demand 

modeling, setting policy parameters, and optimization model we refer the reader to 

Gumrukcu (2007). 

Two steps are followed for validation. The model was first validated for a single 

echelon with the model developed in (Tee and Rossetti, 2002). The next validation was 

performed with the model built in Rossetti et al. (2007). As stated earlier the model under 

study is built upon the model built in that study. Step by step validation of performance 

measures was performed while building the new model.  
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3.4 Performance Measures from the Simulation Model 

One of the goals for this research is to examine various configurations of cycle 

counting while considering the trade-offs between fill rates, accuracy and system costs. 

Therefore, the system performance measures can be grouped in three categories. 

1) Performance   

a) Accuracy 

b) Discrepancy (negative, positive, absolute) 

2) System  

a) Fill Rate (Retailer, DC, and System): Percentages of demand filled immediately.   

b) Probability 

i) Lost Sales: Probability of demand not satisfied at the retailer 

ii) Backorders: Probability of demand not satisfied immediately at DC.  

iii) Lost Sales due to Errors: Probability of demand not satisfied caused by errors.  

c) Inventory (Average on-hand, number of lost sales, number of back orders) 

3) Cost (annual average)   

a) Holding: Cost of carrying inventory  (On hand Inventory * unit cost * holding 

charge) 

b) Asset: Cost of the actual worth of the item (On hand Inventory  * unit cost) 

c) Lost Sales : Cost of unsatisfied demand (Amount of Lost Sales * unit cost) 

d) Transportation: Cost of transportation (Amount shipped * handling unit cost) 

e) Cycle Counting: Fixed cost of counting + Number of units counted * cost of 

counting per unit 
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f) Total Cost: Holding Cost + Asset Cost + Lost Sales Cost + Transportation Cost + 

Cycle Counting Cost 

These performance measures are used to assess the system under the effect of 

various scenarios.    

4. Experimental design 

The simulation experimentation was performed in two primary phases. In phase 1, 

factorial experiments were designed to evaluate the effect of each factor individually, and 

possible interactions between factors. In phase 2, three special scenarios were introduced 

and their effect on system performance explored. The following are the basic modeling 

assumptions used in model building. 

•  All IHPs follow (r, Q) continuous review policy for inventory replenishments.  

• The demand process follows a Poisson process. 

• All unsatisfied demands at the DC are backordered, conversely any demand that can 

not be satisfied is considered as lost sales at the retailer. While no partial fulfillment 

of orders are allowed at the DC, the retailer accepts partial fulfillments. 

• The DC is modeled neither with error nor with cycle counting.  

• The replenishment delay from the supplier to DC and from DC to retailer is assumed 

to be constant. In addition, the supplier is assumed as an unlimited source. 

• Truck capacities and the fixed cost of transportation are neglected. 

• The time for cycle counting is neglected. On the other hand, the cost of counting is 

considered. 

One important issue to understand about the model is that it is non-stationary due 

to the introduction of record errors in the system. Remember that, the inventory orders 
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are determined based on the recorded inventories, which are not reflecting the actual on-

hand inventory when the system has errors.  The accumulation of errors causes this non-

stationary behavior.  In a real system, this non-stationary behavior will not occur because 

of interventions by those people running the system.  Within the simulation model, we 

must deal with this behavior by confining our analysis to yearly performance.  Thus, the 

simulation model is not a steady-state model; however, it still must be initialized.  We run 

the simulation model for 720 days with a warm-up period of 360 days. This enables us to 

“reset” the system’s performance measures at the end of the first year and confine any 

non-stationary (out of control) behavior to a yearly interval. In our simulations, we do not 

turn on the error generation processes during the warm up period. The warm up period of 

360 days is appropriate since in most cases a financial audit of a retail environment must 

occur on a yearly basis due to tax and accounting reasons. After the simulation has been 

warmed up, the model is run for additional 360 days in order to collect performance on a 

yearly basis. During the experiments, each case is then replicated 30 times.  

4.1 Factorial Experiments 

The performance of the multi-echelon inventory system with multiple item types having 

different characteristics maintained by different factors is discussed in this section.  The 

factors to be examined were selected based on the item type. From the large amount of 

inputs we have selected demand as the most essential input, which drives almost all of the 

system behavior. Another factor is the time between scheduled counts. It is obvious that, 

the more often the counting, the better the system fill rate but also the higher the cost. 

The last factor is the number of accumulated opportunity counts across items types in 

order to trigger an opportunity count for the set of items. The lower the trigger number, 
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the higher the frequency of overall counting. The experimental design with factors, their 

levels, and descriptions are given in Table 1. 

Table 1 Experimental Design 
Factor Level Level Description 

Item Type Demand         2 All low, All high 
TBA Scheduled Counts (days) 4 45, 90, 180, none 
Number of items trigger Opportunity Count 4 1,6,12, none 

  

All these experiments compare the different configurations of cycle counting. Most 

retailers prefer carrying more inventory rather than implementing cycle counting. For that 

reason, we include the cases where policy parameters are adjusted in order to get the 

desired fill rate for each demand type. Thus, in addition to the 32 (2 x 4 x 4) cases 

implied by Table 1, the experimental design consists of one more experiment for each 

demand type, resulting in 34 experiments. In the rest of the document, “Re-optimized 

case” is what we call these two experiments. In order to interpret the effect of these 

factors some inputs are kept unchanged during the experiments. These system baseline 

parameters are given in Table 2. 

Table 2 System Baseline Parameters 
System Baseline Parameters 

Number of Item Types 12   
Mean Demand Amount 3 unit 
Std Dev. Demand Amount 1 unit 
Retailer Lead Time 3 days 
DC Lead Time 7 days 
Probability of Transaction Error 10%   
Receipt Error Percent 5%   
Stockloss Error Amount Percent 50%   
Holding Charge 0.24 $/$/year 
Cycle Count Variable Cost 0.25 $/unit 
Cycle Count Fixed Cost 5 $/count 
Handling Cost 0.1 $/unit 
Accuracy observation TB 30 days 
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Since this analysis is based on a relative comparison, the specific values assumed 

are not critical to the overall conclusions. We refer reader to (Gumrukcu, 2007) for more 

detail on the parameter selections. The average annual demand is assumed to have values 

in ranges that can be classified as high and low demand. A rule based approach was 

followed to obtain 12 item types having different demand rates for each case (Gumrukcu, 

2007). As each item type has different demand rates, policy parameters should be 

recomputed for each item type in each case. For the re-optimized cases, the reorder point 

and reorder quantities were recomputed in order to get the same fill rates when the 

system is subjected to error conditions whereas the parameters for the other cases are 

found in the “perfect case”. 

As all the conditions of low demand high cost items and high demand low cost 

items are different, the experimental design explained in the previous section was 

performed in two separate phases: experiments of low demand-high cost items and 

experiments of high demand-low cost items. The first case is the “perfect case” where the 

system is not subject to any kind of error. In other words it is the desired system, 100% 

accurate. Since supply chain systems are subject to both error types in a retail 

environment, this is not a realistic case. Therefore the retailers carry more inventory in 

order to provide the same fill rate as the “perfect case”. This case is the “re-optimized 

case” where the policy parameters are adjusted for each item type to achieve the desired 

fill rate without applying cycle counting. Another case is the “pessimistic case” where the 

system does not do anything to increase the system fill rate. Because the retailers will 

never allow such low fill rates, this case is not realistic either. But in order to show the 

real affect of errors it is included in the cases for comparison purposes. The remaining 15 
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cases are applying different configurations of cycle counting rather than carrying more 

inventory to be closer to the “perfect case”. These are called “cycle counting cases”. 

Cases differ from each other by the number of items triggering opportunity count and 

time between cycle counts. In each set of experiments, we first compare the “cycle 

counting cases” with the re-optimized case. This comparison explains whether cycle 

counting is worth applying rather than carrying more inventory. If so, the second 

comparison is performed in order to select the best configuration of cycle counting out of 

the remaining 15 cases.  

1st Set of Experiments 

In this section the experimental results for low demand high cost items are 

presented. Table 3 and Table 4 show the results of all the 18 cases explained above. From 

the table below, it can be easily seen that, in terms of accuracy and fill rate the perfect 

case is the best case. The re-optimized case is also providing the same fill rate but with a 

very low accuracy. In addition, although there is not much lost sales in that case, the 

majority of the lost sales are derived from the errors in the system. The influence of the 

errors can also be noticed in the amount of discrepancy, which is very high. But all these 

effects can be hidden by carrying more inventory, which leads to higher holding costs as 

illustrated in Table 4. 
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Table 3 Experimental Results of Low Demanded High Cost Items 

  TB  OC  Accuracy 
Retailer 
Fill Rate  

DC  
Fill Rate  

System 
Fill Rate 

P(Lost Sales 
due to Error) 

Abs. 
Disc. 

Perfect none none 100.0% 90.3% 90.4% 90.3% 0.0% --- 
1 none none 94.4% 84.9% 89.3% 86.4% 11.9% 6.502 
2 45 1 92.5% 83.6% 88.8% 85.4% 11.3% 8.667 
3 45 6 92.3% 83.3% 87.9% 85.0% 14.8% 8.999 
4 45 12 91.7% 81.7% 89.1% 84.4% 17.3% 9.656 
5 45 none 91.6% 84.1% 89.2% 85.9% 14.4% 10.13 
6 90 1 79.7% 80.1% 88.9% 83.2% 29.1% 25.84 
7 90 6 79.6% 79.2% 88.8% 82.5% 25.3% 26.07 
8 90 12 77.8% 78.3% 86.8% 81.4% 28.2% 28.74 
9 90 none 89.6% 83.1% 87.7% 84.7% 20.6% 12.35 

10 180 1 69.8% 73.1% 87.5% 78.1% 39.9% 40.72 
11 180 6 62.8% 72.4% 88.4% 77.9% 44.9% 50.78 
12 180 12 63.6% 70.4% 88.2% 76.4% 48.2% 53.18 
13 180 none 89.9% 81.8% 89.2% 84.4% 19.4% 11.88 
14 none 1 73.1% 77.3% 89.2% 81.5% 35.3% 34.76 
15 none 6 38.2% 56.4% 88.8% 66.1% 68.1% 95.77 
16 none 12 33.2% 55.8% 88.8% 65.5% 70.3% 104.3 

RO none none 24.0% 91.8% 87.7% 90.9% 80.5% 192.4 
*RO: Re-optimized case 

 

Table 4 tabulates the costs associated with each case. Instead of only showing the 

total cost, the components of total cost are also included to indicate the reasons of cost 

differences and components that are causing the highest cost. 
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Table 4 Annual Costs of Low Demanded High Cost Items 
Annual Cost 

  Holding Asset Lost   Ordering       
  Ret. DC Ret DC Sales Hand. Ret DC SC OC Total  

Perfect $722 $1,004 $1,342 $2,708 $1,563 $55 $4,369 $2,680 $0 $0 $14,443 

1 $680 $1,001 $1,297 $2,635 $1,606 $55 $4,386 $2,696 $137 $40 $14,532 

2 $681 $1,009 $1,296 $2,650 $1,589 $56 $4,370 $2,688 $130 $0 $14,469 

3 $673 $1,012 $1,308 $2,664 $1,680 $57 $4,485 $2,753 $134 $0 $14,764 

4 $667 $997 $1,301 $2,649 $1,831 $57 $4,491 $2,737 $138 $0 $14,868 

5 $684 $992 $1,319 $2,665 $1,669 $56 $4,454 $2,747 $61 $49 $14,697 

6 $641 $1,002 $1,296 $2,682 $1,912 $57 $4,533 $2,775 $58 $7 $14,962 

7 $652 $1,006 $1,296 $2,739 $1,843 $56 $4,476 $2,774 $57 $0 $14,899 

8 $646 $997 $1,269 $2,716 $1,825 $55 $4,427 $2,686 $56 $0 $14,676 

9 $667 $1,002 $1,321 $2,700 $1,760 $56 $4,423 $2,723 $23 $72 $14,746 

10 $617 $998 $1,203 $2,708 $2,221 $54 $4,357 $2,652 $22 $20 $14,852 

11 $602 $997 $1,269 $2,674 $2,365 $55 $4,460 $2,731 $20 $0 $15,174 

12 $601 $1,007 $1,204 $2,746 $2,330 $54 $4,328 $2,618 $18 $0 $14,906 

13 $668 $1,013 $1,327 $2,685 $1,674 $56 $4,392 $2,705 $0 $75 $14,594 

14 $641 $988 $1,254 $2,590 $2,068 $55 $4,349 $2,678 $0 $14 $14,638 

15 $503 $1,000 $1,070 $2,931 $3,225 $49 $4,081 $2,474 $0 $4 $15,336 

16 $488 $1,003 $1,037 $2,838 $3,206 $50 $4,225 $2,534 $0 $0 $15,380 

RO $1,467 $1,651 $4,674 $4,667 $708 $67 $2,824 $2,377 $0 $0 $18,435 

 

As expected, the re-optimized case is the one with the highest cost. The biggest 

impact on this high cost comes from retailer holding and asset cost due to carrying more 

inventory. On the other hand, lost sales and ordering costs decrease since the retailer 

achieves high fill rates by having less frequent high volume orders. The reduction in 

these costs cannot offset the increase in the holding and asset costs. Case 1 and Case 2 are 

found as the best cases for most of the performance measures, revealing that increasing 

the number of scheduled cycle counts with more opportunity cycle counts provides the 

best savings opportunities for low demand high cost items. 

 

2nd Set of Experiments 

The second set of experiments includes high demand and low cost items. As seen 

in Table 5, promising performance measure levels can be obtained by cycle counting.  
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Table 5 Experimental Results of High Demand Low Cost Items 

  TB OC Accuracy 
FR 
Ret 

FR 
DC 

Sys 
FR 

P(LostSales 
DuetoError) 

Abs 
Disc 

Perfect none none 100.0% 93.4% 89.8% 93.3% 0.0% --- 
1 45 1 93.7% 93.4% 89.4% 93.3% 1.2% 18.35 
2 45 6 88.3% 92.8% 89.4% 92.7% 5.7% 26.28 
3 45 12 86.9% 92.9% 89.0% 92.8% 8.2% 31.37 
4 45 none 85.9% 92.8% 89.9% 92.7% 8.6% 33.11 
5 90 1 92.6% 93.3% 90.7% 93.2% 1.4% 20.16 
6 90 6 85.4% 93.2% 89.8% 93.0% 7.3% 37.01 
7 90 12 71.4% 92.2% 90.3% 92.1% 20.9% 74.23 
8 90 none 71.7% 92.3% 89.8% 92.2% 20.5% 71.11 
9 180 1 92.9% 93.3% 90.1% 93.2% 1.6% 20.07 

10 180 6 82.9% 92.9% 89.6% 92.8% 10.2% 44.29 
11 180 12 66.7% 91.5% 89.8% 91.4% 27.9% 86.85 
12 180 none 53.8% 89.5% 90.0% 89.5% 46.3% 134.14 
13 none 1 91.9% 93.2% 89.0% 93.1% 1.6% 21.59 
14 none 6 81.7% 93.0% 89.9% 92.9% 10.1% 43.37 
15 none 12 64.9% 90.5% 89.6% 90.5% 31.7% 99.33 
16 none none 22.8% 79.7% 90.0% 80.0% 78.0% 256.49 
RO none none 13.0% 89.3% 89.5% 89.3% 87.6% 613.52 

 
In addition to high performance levels, high cost increases come from cycle 

counting which is summarized in Table 6. The resulting dollar savings for high demand 

low cost items are significantly different than the low demand high cost items. The re-

optimized case, which appeared as the worst case for the low demanded items is one of 

best performing cases for high demand low cost items in terms of total cost. Moreover 

case 1 which was selected as the best case in the first experimental design is the worst 

case based on total costs. Therefore, one can conclude that cycle counting leads to 

additional and unnecessary effort to improve retail system performance in this situation. 

Case 16 with the lowest fill rate generates the highest lost sales cost. Moreover, the re-

optimized case has the retailer carrying more inventory, which causes an increase in 

holding and asset costs. Since these items are very low cost items, total cost does not 

significantly vary and does not generate major differences between any cases.  
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Table 6 Annual Costs of High Demand Low Cost Items 
  Holding Asset Lost   Order       
  Retailer DC Retailer DC Sales Hand. Retailer DC SC OC Total  

Perfect $149 $476 $513 $1,464 $1,277 $2,040 $11,132 $5,685 $0 $0 $22,734 

1 $148 $476 $511 $1,477 $1,250 $2,046 $11,161 $5,716 $807 $462 $24,053 

2 $148 $476 $507 $1,475 $1,285 $2,048 $11,162 $5,702 $770 $120 $23,691 

3 $147 $474 $506 $1,475 $1,276 $2,045 $11,160 $5,691 $796 $0 $23,569 

4 $147 $474 $506 $1,471 $1,290 $2,047 $11,158 $5,698 $773 $0 $23,565 

5 $148 $476 $507 $1,466 $1,268 $2,042 $11,136 $5,690 $358 $594 $23,684 

6 $148 $476 $507 $1,464 $1,260 $2,043 $11,152 $5,698 $377 $160 $23,285 

7 $146 $475 $503 $1,475 $1,338 $2,040 $11,128 $5,680 $337 $54 $23,175 

8 $146 $476 $505 $1,474 $1,280 $2,029 $11,062 $5,652 $353 $0 $22,977 

9 $148 $475 $511 $1,470 $1,258 $2,037 $11,112 $5,674 $150 $714 $23,549 

10 $148 $475 $507 $1,476 $1,288 $2,039 $11,128 $5,690 $158 $177 $23,087 

11 $145 $476 $499 $1,474 $1,349 $2,034 $11,107 $5,684 $158 $98 $23,024 

12 $141 $477 $487 $1,488 $1,522 $2,021 $11,053 $5,643 $125 $0 $22,955 

13 $149 $476 $511 $1,478 $1,273 $2,040 $11,118 $5,678 $0 $769 $23,491 

14 $147 $475 $508 $1,475 $1,271 $2,042 $11,142 $5,692 $0 $198 $22,950 

15 $144 $477 $495 $1,466 $1,398 $2,024 $11,098 $5,670 $0 $84 $22,855 

16 $124 $485 $426 $1,470 $2,168 $1,909 $10,645 $5,429 $0 $0 $22,655 

RO $161 $447 $563 $1,278 $1,095 $2,081 $11,553 $5,958 $0 $0 $23,136 

 
In all cycle counting configurations wherein any of scheduled and opportunity 

counting is applied individually or together, opportunity counting is found as a better 

alternative for these highly consumed fast items 

Overall, low demand-high cost items show potential for high performance 

measure values and dollar savings through cycle counting. Comparing scenarios in the 

first experimental set indicates that increasing the frequency of both counting types 

provides the best opportunities for system improvement. Projected savings from the cycle 

counting analysis range between $3,567 and $3,966, or 19.3% and 21.5% in the scenarios 

having greater than 80% fill rates. Cycle counting does not offer such promising results 

for high demand low cost items. The resulting savings from cycle counting range 

between -$917 and $281, and -3.9% and 1.2% respectively, satisfying desired fill rate 

values.  



 

 25 

4.2 Special Scenarios 

In the second phase of the experimental analysis, three special scenarios are 

examined: (1) bad item(s), (2) opportunity response, and (3) more often scheduled 

counting. Since it was found that cycle counting is recommended for low demand-high 

cost items, these special scenarios are all applied to low demand-high cost items to 

further investigate potential savings from cycle counting. 

The bad item(s) scenario examines the effect of one or more potential problematic 

item types on the rest of the supply chain. This is modeled by not performing any kind of 

cycle counting for the one or more item types selected. Our interest in the bad item(s) 

case is to understand what will be the effect if there are some bad actors within the low 

demand items. In this scenario, 5 unique cases are carried out having respectively none, 

3, 6, 9, and all the item types not included in the cycle counting activity. As scheduled 

counting with 45 days time between and opportunity counting for every opportunity is 

indicated as the best case for low demanded high cost items, the impact of bad items are 

investigated with these settings.   

Table 7 Performance Measures of Bad Item(s) Scenario 
    Fill Rate  Discrepancy 

Bad 
Items Accuracy Retailer DC System 

P(lost sales 
due to error) Abs.  Neg.  Pos.  

0 94.4% 84.9% 89.3% 86.4% 11.9% 6.502 6.427 0.075 
3 88.7% 84.5% 88.7% 86.0% 18.1% 12.687 11.408 1.279 
6 84.6% 83.4% 88.8% 85.3% 24.3% 17.268 14.79 2.478 
9 79.6% 81.5% 88.7% 84.0% 29.5% 24.523 20.394 4.129 

12 33.2% 55.8% 88.8% 65.5% 70.3% 104.3 94.506 9.794 
 

Accuracy and fill rates decrease as the number of item types not included in the 

cycle counting activity increases whereas discrepancy and probability of lost sales caused 

by errors increases.  
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Figure 3 Illustration of Bad Item(s) Scenario Performance Measures 

 
Figure 3 illustrates how the performance measures are affected as the number of bad 

items increases. Excluding the last scenario, in which none of the item types are counted, 

the remaining scenarios display a linear decreasing trend in terms of fill rate at the retailer 

and for the system. As mentioned previously, the fill rate at the DC is not affected by the 

changes at the retailer. Therefore, the fill rate at the DC represents a steady behavior with 

a slope close to zero. All performance measures get worse drastically in the last case.  

This scenario brings out a kind of Pareto analysis. That is, counting 25% of item 

types (9 bad item types) are able to generate promising performance measure values. 

Total cost comparisons of the cases can provide useful insights regarding the analysis of 

the bad items.  

The other special scenario analyzes different responses whenever an opportunity 

to count a low demand item type exists. Recall that, the model under study captures two 

types of discrepancy. This scenario examines what-if one of the discrepancy capturing 

types does not trigger a count. This case is performed to be aware of which of the 

discrepancy types are more critical. This scenario is modeled by performing cycle 
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counting only whenever an opportunity is captured. In order to interpret the effect of the 

different opportunity responses on the performance measures, four possible cases were 

tested as given in Table 8. 

Table 8 Opportunity Response 

    Fill Rate 
P(Lost 
Sales Discrepancy 

  Accuracy Ret. DC System 
due to 
Error) Abs. Pos. Neg. 

 No Count 33.2% 55.8% 88.8% 65.5% 70.3% 104.295 96.506 7.954 
Counting when 
actual is enough, 
recorded is not 
enough 47.1% 63.5% 90.1% 71.4% 59.4% 79.167 72.981 6.512 
Counting when 
actual is not 
enough, recorded is 
enough 89.5% 81.7% 89.2% 84.3% 19.6% 12.31 10.568 1.742 

Counting in both 
cases 89.9% 81.8% 89.2% 84.4% 19.4% 11.884 10.098 1.786 

 

The first case has neither type of opportunity count. It demonstrates the worst 

performance measures as expected. The next case triggers a count only if customer 

demand is satisfied, while records indicate stockloss. Counting in this situation does not 

improve the system performance significantly. The latter case, where a cycle count is 

triggered when actual on-hand inventory is enough, but the records indicate a loss, 

provides a considerable improvement in all the performance measures. This scenario 

reveals two essential results. The first is that the majority of the errors at the retailer are 

caused by having less actual inventory than recorded, which results in significant lost 

sales. Typically discrepancy tends to be negative since stockloss always causes negative 

discrepancy and transaction error is generating both positive and negative discrepancies. 

The second result is that whenever a negative discrepancy is identified the most impact 

from cycle counting can be achieved.  
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The last special scenario extends the experimental design of low demand high 

cost items. Remember that, in terms of retailer fill rate the best possible case is the re-

optimized case having 90% fill rate. The best cycle counting can achieve is 84.9% with 

the given configurations. In this scenario, we examine other time between scheduled 

counts in order to get a similar fill rate as the re-optimized case and compare the costs.  

In Table 9 the performance measures of the 3 additional settings for only scheduled 

counting are summarized. 

Table 9 More Often Scheduled Counting Results 

TB  Accuracy Retailer Fill Rate  
P(Lost Sales due to 

Error) Abs. Disc. Total Cost 
7 99.6% 88.3% 1.7% --- $15,331.62 

14 98.8% 87.6% 2.8% 1.544 $14,897.60 
28 98.7% 85.7% 7.9% 1.744 $14,740.51 

 

When the time between of scheduled counts increases, accuracy decreases and 

eventually fill rates decrease. 

 

Figure 4 Total Cost vs. Scheduled Count Time Between 
Figure 4 summarizes all findings by each scenario examined. The points in the 

graph indicate the total cost of the supply chain for the corresponding time between cycle 
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counting. In parenthesis, the first number states the accuracy while the next one 

represents the fill rate at the retailer. Although the lowest cost is achieved for a 90-day 

cycle counting interval, it provides 77.8% accuracy with a 78.3% fill rate. Such accuracy 

and fill rate values are not very satisfactory. The case of a 7 day cycle counting interval 

provides the highest fill rate, which is almost the same as the re-optimized case obtaining 

$3,104, a 16.8% cost savings. As a result, if the objective is to satisfy a 90% fill rate, 

cycle counting is still applicable with a substantial improvement in the cost savings.  

5. Summary and Future Research 

Inventory record inaccuracies cause poor customer service levels with increased 

inventory costs at the retailers. One method of hiding the inventory record accuracy 

problem is to carry more inventory in order to satisfy customer needs. Among the various 

methods to solve the inventory inaccuracy problems, cycle counting is the most popular. 

But it is also a well known fact that cycle counting by itself is an additional cost. In this 

research cycle counting is investigated to observe the potential benefits that can be 

gained. The comparison between the cost of carrying additional inventory and applying 

cycle counting is demonstrated. 

A simulation model for a multi echelon inventory system was developed. The 

important feature of the model is its ability to simulate more than one item type within a 

multi echelon inventory system as well as a more general demand amount process. To 

our best knowledge, none of the models in the literature examine multiple item types in 

such a detailed way. Consequently, the model is also able to provide accuracy and 

discrepancy measures for the retailer across the item types. The transportation activity 

from the retailer to the DC is modeled by scheduled deliveries, while previous studies 



 

 30 

assume transportation just as a deterministic delay. Furthermore, the total supply chain 

costs are included in the model in addition to supply chain performance measures such as 

system fill rates. Probability of lost sales caused by errors is also investigated in the 

analysis, and has not been previously examined in the literature. An extensive set of cycle 

counting configurations were examined while observing the trade-off between fill rates 

and system costs. The objective is to examine the best possible configuration of cycle 

counting given a set of SKUs to cycle count. 

The performance of the system varies depending on the characteristics of the item 

types carried by the retailer. This study examines two general kinds of item types which 

commonly exist in a retail environment: high demand-low cost items and low-demand-

high cost items. It is shown that cycle counting is essential for low demand-high cost 

items providing substantial savings with high fill rates. The study captures enough 

evidence to suggest that applying scheduled and opportunity count frequently is quite 

beneficial for these slower moving high cost items. On the other hand, for high demand 

low cost item types, cycle counting results in trivial savings. Thus, one can choose to 

carry more inventory instead of implementing cycle counting, since operational changes 

might generate additional costs which are out of the scope of this study. For these fast 

moving low cost item types, cycle counting can be an unnecessary effort. From our 

research on the high demand item types, we can also make the conclusion that 

opportunity counting performs better for these item types, if it is ensured that promising 

savings are attainable from cycle counting.  

It may not be feasible to count every low demand high cost item type at the 

retailer. The cases tested by introducing the bad items indicate that as we increase the 
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number of item types that are not included in the cycle counting, the system performance 

degrades. Cycle counting can generate significant improvements even when it is applied 

for a sub-set of the item types. Typical errors at the retailers result in negative 

discrepancies, causing less actual on hand inventory than the recorded. Consequently, it 

was shown that applying opportunity counts whenever actual on hand is less than 

recorded provides major savings compared to the case in which the positive discrepancy 

triggers a cycle count.  

We have identified several areas of potential future research. Further research 

may consider modeling demands in terms of orders (a set of demands for multiple types 

of items). Moreover high demand high cost, and low demand low cost item types can be 

further investigated. Another area for future research is the optimal timing and sample 

size for cycle counting programs within a supply chain in order to minimize cycle 

counting costs while still maintaining overall supply chain inventory record accuracy and 

system fill rate objectives.  Future research can also utilize RFID as a practical tool for 

cycle counting.  
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