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Abstract: The effective management of supply chains depends upon the ability of decision makers to control inventory 
while maintaining customer service at low cost.  This paper examines an analytical model for the two-echelon one 
warehouse and multiple retailers system using (R, Q) inventory policies.  A simulation model was developed to analyze the 
performance of the analytical model under conditions that violate the model’s fundamental modeling assumptions.  The 
behavior of the multi-echelon inventory model under different demand (non-Poisson) and lead-time (non-constant) 
conditions were observed in an experimental design.  The simulation results showed that there was significant error in 
estimating the total system cost (tends to be underestimated) when the model assumptions are violated.  The cost relative 
error ranged between 34% and – 40% over all the experiments examined.  Models of the one warehouse and multiple 
retailers two-echelon inventory system are significant because they can be embedded within aggregation/disaggregation 
techniques that allow the general approximation of supply chain networks.  Practitioners looking to utilize these models 
will have a better understanding of when and when not to use these models in practice. 
 
 

1. INTRODUCTION 
 
Efficient and effective management of inventory throughout the supply chain can significantly improve customer service 
levels and reduce cost.  Many multi-echelon inventory models are used to determine the decision rules (inventory policies) 
for jointly controlling the inventory levels at all locations in a distribution system.  These models are sometimes integrated 
into enterprise resource planning systems and are treated as black boxes when obtaining solutions.  These models should be 
robust enough to provide accurate and useful results over a wide variety of conditions found in practice.  This research 
examines the robustness of a (R, Q) continuous review two-level inventory model via simulation.   
 The distribution network under consideration consists of one warehouse and N retailers, where the retailers directly serve 
the customers and the warehouse supplies all the retailers.  At each facility location, when the inventory position (net 
inventory on hand plus stock on order minus backorders) drops below the reorder point R, a replenishment order quantity of 
Q is placed, i.e. the (R, Q) continuous review replenishment policy.  Many have suggested using the (R, Q) inventory 
control policy on the slow moving type A items or in situations where the ordering cost is high [Silver, Pyke, and Peterson 
(1998), Hopp and Spearman (2000), Zipkin (2000), Axsater (2000), etc.].   
 Axsater (2000) presents a procedure for evaluating two-echelon inventory systems under stochastic conditions.  The work 
is significant in that exact analytical results are obtained for the model and the model can then be embedded within 
aggregation/disaggregation procedures for evaluating supply chains.  The model is built under certain assumptions.  This 
study investigates the effects of violating those modeling assumptions, and determines the conditions where the model will 
perform poorly.  The total system cost is an important measure for this study, and it serves as the basis for comparisons.  
Only if the model is proved to be robust should one suggest its general use in practice.  In addition, the understanding 
gained will help develop more robust models in the future.  To examine the robustness of the model, simulation 
experiments over a wide variety of parameters were performed to estimate the true system cost and allow comparison to the 
cost predicted by the model.  The simulation model built in this study is simple and ease to use, and the model can be 
modified to accommodate other distribution systems. 
 The next section provides an extensive review of relevant literature concerning multi-echelon inventory systems and 
robustness studies.  The methodology is explained in the following sections where we present the reconstruction of the 
analytical model, the building of the simulation model, the design of experiments, and the results.  The last section 
concludes with recommendations on directions for future research.          
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2. LITERATURE REVIEW 
 
2.1 Multi-echelon Inventory Control 
 
Many early multi-echelon inventory models have been used for contingency support, such as the work of Sherbrooke 
(1968) and Muckstadt (1973) on controlling the reparable items in the military base-depot supply system.  Since then, many 
other multi-echelon inventory systems have been studied extensively, especially for service part inventory control and for 
the one-for-one base stock ordering policy (a special case of (R, Q) policy with Q = 1).  Previous research has led to the 
development of analytical inventory models.  Of particular note is the work of Cohen et al. (1986), which has been 
successfully integrated into IBM’s OPTIMIZER, a multi-echelon service inventory optimization software support system.  
IBM reported a savings of over $250 million resulting from the use of their OPTIMIZER software.     
 The continuous review (R, Q) policy two-echelon system has also received tremendous attention from researchers.  A 
good review of the models dealing with continuous review policies for multi-echelon inventory systems can be found in 
Axsater (1993a).  The optimal solution of a two-echelon inventory system depends on the assumptions used in the model: 
system structure, cost function, demand distribution, replenishment lead-time, etc.  The research in this area can be 
categorized into two main approaches.  The traditional method focuses on the steady-state behavior of the inventory levels, 
where the lead-time demand is approximated by the mean and variance of a certain distribution.  The multi-level system is 
decomposed into single locations to be evaluated separately with parameters that depend on each other.  The total cost 
function is obtained through the average inventory and backorder units.  A seminal paper using this approach is 
Deuermeyer and Schwarz (1981).  Deuermeyer and Schwarz’s work was followed by Moinzadeh and Lee (1986), Lee and 
Moinzadeh (1987), and Svoronos and Zipkin (1988).  The approximation method of Svoronos and Zipkin (1988) has been 
shown by Axsater (1993a, 1993b) to be very accurate for the identical retailer case.   
 As opposed to the traditional approach, Axsater (1993a, 1993b) suggested several approximation methods.  These 
approximations were derived based on the previous work of Axsater (1990), which is a recursive procedure for the 
evaluation of one-warehouse and N retailers utilizing one-for-one policies.  The holding and backordering costs must be 
functions of the delay experienced by the customer.  His numerical results show that his approximations provide good 
results that are comparable to that of Svoronos and Zipkin (1988).  Along the line of expressing the total system costs as a 
weighted average of one-for-one policies, Axsater (1998) extended his previous model to evaluate the non-identical retailer 
case.  He successfully developed the exact solution for the case of two retailers, and then used that solution to approximate 
for the case of more than two retailers.  
 Forsberg (1996) redefined the probability distribution functions that are used to determine the weights for the weighted 
mean costs for one-for-one policies.  As a result of this new cost expression, the two-level inventory system with one-
warehouse and N non-identical retailers can be evaluated exactly under their assumptions.  Forsberg (1997) also extended 
this exact evaluation to the case in which the demand process is not Poisson distributed.  His model provides good 
approximations for the system with Erlang distributed customer inter-arrival times.   
 Since previous models by Axsater and Forsberg were based on the weighted average costs for one-for-one policies, the 
models are limited to pure Poisson demand processes only and rely on a cost structure that is not commonly used.  Axsater 
then investigated the steady-state behavior of the inventory levels.  He first developed an approximation method to evaluate 
the two-level system with non-identical retailers under the compound Poisson demand process (Axsater, 1995).  The cost 
structure in this approximation was still constrained to be a function of delay and storage time units; however, it did not 
depend on the costs of one-for-one policies. 
 Finally, Axsater (2000) provided an exact analysis through determining the complete probability distributions of the 
retailer inventory levels in steady state.  This model uses a common cost structure that can more easily be understood, and 
the model can be used to solve the one-warehouse and non-identical retailer system with compound Poisson demand.  This 
model, by far, is the state-of-art in exactly evaluating two-echelon inventory systems with continuous review (R, Q) batch 
ordering policies for the low demand items such as spare parts.  Therefore, the Axsater (2000) was selected for testing in 
this study.            
 
2.2 The Robustness of Inventory Models 
 
Previous studies have been performed to test the robustness of inventory models directly and indirectly.  Those studies were 
done using several formats and approaches.  Some used analytical models as opposed to computer simulation.  Some 
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evaluated the system performance through a sensitivity analysis on several parameters, and some studied the influence of 
just a single parameter in the model, especially the demand factor.  Many of the studies were performed on single location  
 
 
inventory models.  The results of Naddor (1978), Fortuin (1980), Banks and Spoerer (1986), and Lau and Zaki (1982) 
conclude that solutions are affected more by the means and standard deviations of the demands rather than the form of the 
demand distribution.  The effect of the demand and lead-time distribution was found significant only when the differences 
between the variances (standard deviations) of the probability distributions are large.   
 The normal approximation has been often used as an approximation for the lead-time demand distribution, especially 
when determining the safety stock.  Tyworth and O’Neill (1997) examined the use of such approximations in (R, Q) 
continuous review inventory models.  By comparing the solutions from the normal theory and exact approaches, they found 
that the normal approximation method is robust across seven industry groups (fast-moving demand items).  Fotopoulos, 
Wang, and Rao (1988) presented a method to determine the safety stock when the demands are autocorrelated and the lead-
times are random.  Their numerical results show that ignorance of autocorrelation in demand could provide severe errors; 
however, the effect of non-normal demand is found to be relatively small.   
 The above studies were all concerned with single-echelon inventory models.  Lagodimos, De Kok, and Verrijdt (1995) 
performed a study on multi-echelon models.  They tested the robustness of two two-echelon serial inventory models under 
stationary autocorrelated demand processes.  The essential differences between their research and this one are that both of 
the models examined in their research assumed independent identically distributed normal demands, and the models operate 
with a periodic review order-up-to-S inventory policy.  The approach of their study is analytic and their parameters are 
redefined to extend the tested models to fit any stationary autocorrelated normal demand process in an exact closed form.  
Their results demonstrate that the models, which ignore the effects of autocorrelation, might provide significant error in the 
system performance measures depending on the overall system parameters setting. 
 Our review of the literature has indicated that no studies have been performed to examine the robustness of two-level 
multi-echelon inventory models, especially those of the form given in Axsater (2000).  In this research, we are interested in 
understanding the circumstances under which violations of the model’s assumptions cause errors and deteriorate the 
accuracy of the models.  If the deterioration is not significant, then we can be more assured of the model’s applicability in 
practice. 
 
 

3. METHODOLOGY 
 
Our basic methodology is to compare the results of the simulation under various conditions tested to the results of the 
analytical model.  The optimum (R, Q) values recommend by the analytic models are examined to determine the sensitivity 
and robustness of the models.  First, the solutions and their associated performance measures are obtained by using the 
analytic models.  The solutions then serve as the input for the simulation model.  By manipulating the capability of the 
simulation software, the simulation model is run with various conditions that are different from the assumptions of the 
analytic model.  The simulation model captures the performance measures of the system for comparison.   
 
3.1 The Axsater (2000) Exact Analysis Program 
 
A prototype program is available at ftp://ftp.ie.lth.se/ie/sven/ExactAnalysis/ for the Axsater (2000) model.  The source code 
of the program was obtained from the author.  The program is developed within a Microsoft Excel spreadsheet environment 
with Visual Basic for Applications, and the application program is compiled in Visual Basic.  In order to run the program 
with larger problems such as more than 10 retailers, the source code was modified to handle larger array sizes.  The 
program was used to solve all 32 test problems that have been suggested by Svoronos and Zipkin (1988), and then the 
solutions were used as the base cases for testing.  The recommended inventory policies were used as the simulation inputs.  
In these 32 test problems, the system structure and assumptions are: 
• The system has one warehouse and N identical retailers each with continuous review (R, Q) inventory policies. 
• The demand is assumed to be stationary Poisson process at the retailer level. 
• The replenishment lead-time is deterministic. 
• All unsatisfied demands are backordered. 
 
3.2 The Simulation Model 
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In this study, discrete-event simulation models were built to test the robustness of the two-echelon inventory models found 
in Axsater (2000) and Svoronos and Zipkin (1988).  For the conditions involved within this study, we are interested in the 
steady state performance measures: the expected inventory on-hand at the retailers and at the warehouse, the expected  
 
 
number of item backordered at the retailers, and the expected total system cost.  The research used Arena 5.0 Professional 
Edition to develop the models.  Arena 5.0 is simulation software that utilizes SIMAN simulation language as the main 
mechanism behind its high-level user-friendly interface (Kelton et. al., 1998).      
 
3.2.1 Model Structure  
 
Since both the warehouse and retailers follow the same type of inventory policy, a single location inventory system was 
first simulated.  The flowchart in Figure 1 illustrates the main inventory control activities at a single facility location.  When 
a demand (customer order) occurs, the unit demanded is determined, and then the system checks for the availability of 
stock.  If the stock on-hand is enough for the order, the demand is filled and the quantity on-hand is decreased.  On the 
other hand, if the stock on-hand is not enough to fill the order, the entire order is backordered.  The backorders are 
accumulated in a queue and they will be filled on a first-come-first-serve basis after the arrival of replenishment order.  The 
inventory position (inventory on-hand + on-order – backorders) is checked each time after a regular customer demand and 
the occurrence of a backorder.  When the inventory position falls under the reorder point, a replenishment order is placed.  
The replenishment order will take a certain time to arrive and fill any backorders at the retailer and increase the on-hand 
inventory.                         
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Figure 1. Flowchart of the Single Location Inventory Control Activities. 
 
 

The above logic in the single location inventory model was expanded into a two-level inventory system (one warehouse 
and N retailers) by adding in the relationships and interactions between levels.  The main control activities at the retailer are 
the same as the single location model above until the retailer places a replenishment order.  The order will be sent directly 
to the warehouse model.  The demand process at the warehouse depends on the order frequency and order quantity at the 
retailers.  The inventory control activities at the warehouse are similar to the retailer.  When the demand is filled at the 
warehouse, the stock is transferred to the retailer.  If the warehouse is out of stock, the demand will be backordered, and the 
retailer will have to wait for extra time to get its replenishment.  Figure 2 shows the flow of the orders between the 
warehouse and retailers in the simulation.  Within the simulation model, the N retailers were generalized such that only one 
set of retailer logic blocks was necessary because of the use of arrays. 
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Figure 2. The Order Flow in the Multi-echelon Inventory System. 
 
 

The following assumptions were also incorporated into the model: 
1. The demand process at the retailer is established through the specification of the time between arrivals and the 

demand quantity.  A general renewal process with the time between orders governed by a specific probability 
distribution as given in the experimental design was used.  Each demand was assumed to be a single unit of product.   

2. All unsatisfied demand will be backordered and no partial filling of an order is allowed.   
3. The replenishment lead-time of the warehouse is constant, and supply is unlimited.     
4. The retailer lead-time can be deterministic or stochastic.  After performing some analysis on the simulation models 

with stochastic lead-times (gamma and exponentially distributed), the probability that more than a single order is 
outstanding is very small in our test cases.  Therefore, in this study we will ignore the effect of order crossing such 
that the replenishment orders may cross when multiple orders are outstanding.  For further information on how to 
handle this problem, we refer to Zipkin (1986). 

 
3.2.2 Model Verification and Validation 
 
After the simulation model was built, step-by-step debugging of the Arena simulation program was performed to see if the 
programming logic matched the conceptual model (see the flowcharts in Figure 1 and 2 above).  The simulation model was 
verified to run as intended.  The model also has to be validated so that the performance measures given are an accurate and 
promising representation of the actual system.  The model was first validated for the single location inventory model case.  
The one retailer model was compared to an analytic model with similar characteristics in Zipkin (2000) (p.190, example 
6.2A, part 2).  The comparison showed that the simulation model provides accurate measures for the system performance 
(deviations with less than or equal to 0.01 at standard errors of 0.3 or less under 30 replications of 10 years run-length).   
 The logic and entity movement in the two-echelon program were also checked and verified.  The Axsater (2000) model 
was used to determine the exact values for the 32 test problems of Svoronos and Zipkin (1988).  The exact evaluation of 
these 32 test problems was compared to the outputs from the simulation model, and the simulation results showed little 
deviation from the analytical results.  The deviations of the simulated total system cost from the exact value were only 0.07 
or less (with standard errors of 0.04 or less under 30 replications of 50 years run-length).  Therefore, both the single 
location and two-echelon inventory models were validated under the condition of deterministic lead-times with Poisson 
demand process at the retailer.  The simulation model accurately predicts the performance of the system. 
 
3.2.3 Steady-State Simulation 
 
According to Needham and Evers (1998), an inventory system of this nature is a non-terminating system and one must 
design the experiments to evaluate the system under steady-state conditions.  The experimental analysis of a simulation 
model must provide sufficient independent observations to do statistical tests and to obtain statistical significance.  Initial 
inventory on-hand, on-order, and backordered at each location were set to zero for the simulation model, and these 
conditions could cause initialization bias.  Welch’s plot procedure as described in Law and Kelton (2000) was used to 
determine the warm-up period.  The warm-up period of five years was used to mitigate the effect of initialization bias.  The 
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batch size of 50 years was found to be sufficient to produce uncorrelated batch means and unbiased variance estimates from 
the normality and time series autocorrelation tests.  Thirty batches were determined to be adequate to ensure a 95% 
confidence interval width of less than 0.34 for the average annual total cost measurement.  As a summary, a warm-up 
period of five years and 30 batches of 50 years were used for all experiments within the study.   
 
 

4. EXPERIMENTS AND RESULTS 
 
Factorial experiments are designed to evaluate the effect of each individual factor, and the possible interactions between 
factors.  The behaviors of the multi-echelon inventory model under different demand and lead-time conditions are of 
interest in this study.  In particular, we examined the effect of violating the Poisson arrival process assumption at the 
retailers, and we examined the effect of non-constant lead-time.  For the renewal arrival process, the gamma distribution 
was chosen due to the fact that the exponential distribution is a special case of the gamma.  As for the lead-time 
distribution, many have found that the gamma distribution is desirable in the real world [Bagchi, Hayya, and Ord (1984) 
and Tyworth and O’Neill (1997)].       
 
4.1 Experimental Design 
 
The experiments consisted of a total of seven factors as shown in Table 1.  The original 32 test problems given in Svoronos 
and Zipkin (1988) consisted of the first five factors.  We added the coefficient of variation (CV = standard deviation / mean) 
of the demand and lead-time factors to control the variability of the demand and the lead-time.  Six scenarios were run for 
each of the original 32 test problems.  Therefore, the factorial design consisted of a total of 192 test cases (design points).      
 

Table 1. Experimental Factors and Levels. 
 

Factors Symbols Levels Level 
Low - 0.1 unit demand per period Average 

Demand D 2 
High - 1.0 unit demand per period 

Small - 4 retailers Number 
retailers N 2 

Large - 32 retailer 
Small - $5 per unit backordered Backorder cost 

factor Pr 2 
Large - $20 per unit backordered 

1 unit Retailer order 
quantity Qr 2 

4 units 
1 Qr batch-unit Warehouse 

order quantity Qw 2 
4 Qr batch-units 

Gamma distributed (low Cv = 0.4) Demand Cv D_CV 2 
Gamma distributed (high Cv = 1.6) 
Gamma distributed (low Cv = 0.4) 

Gamma distributed (Cv = 1.0, exponential) Lead-time Cv L_CV 3 
Gamma distributed (high Cv = 1.6) 

 
 Since we are interested in measuring the robustness of the model, we need to select responses that compare the model’s 
performance to that of the simulation.  In an inventory system, the main measure of performance is the average total system 
cost, which is computed from the expected on-hand inventory level at the retailer, the expected number of backorders at the 
retailer, and the expected on-hand inventory level at the warehouse as defined in the Svoronos and Zipkin (1988).  To 
measure the robustness of these models in estimating the performance of the system, the deviation (error) of the estimated 
values from the actual system values (simulated values) are needed for comparisons.  If the error is a positive number, the 
model overestimates the system, which means the actual value is lower.  If the error is negative, the system performance is 
underestimated such that the actual value is higher.  Are these deviations acceptable to guarantee the use of the model?  
Under what condition(s) will the model perform better? 
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 Since each test case has different conditions with certain recommended inventory policies, the performance measures are 
not the same for each case.  The error will show how much the model deviates from the actual value.  The error and relative 
error are defined as follows:   

 Error = (Model Estimated Value) – (Actual Simulated Value)  
  Relative Error = Error / (Actual Simulated Value) 
 Nevertheless, the relative error has a disadvantage, which is the over sensitivity of this measure.  When the system has 
small performance measures, little deviation will give a high relative error.  The error and relative error of the average total 
system cost are the main responses used in the statistical analysis of the factorial experiments in this study.  In these 
experiments, the 192 cases were run with 30 batches yielding 30 estimates of each performance measure.  The simulation 
captured a total of 5760 observations.    
 
4.2 Results and Discussions 
 
Table 2 reports the summary statistics of the error and relative error in predicting performance measures under all testing 
conditions from all the simulation observations (across all experiments).  The summary statistics include the sample mean, 
sample standard deviation, maximum, upper quartile, median, lower quartile, minimum, and sample size.  Note: one should 
not assume a direct relationship between the error and relative error summary statistics.  There is no guarantee that the 
arrangement of the error and relative error is in the same order.  For example, the maximum relative error might not come 
from the maximum error due to the over sensitivity issue of the relative error mentioned above. 
 

Table 2. Overall Total System Cost Error and Relative Error Summary Statistics. 
 

Average Total Cost
 Error Relative Error

Mean -4.16 -0.04 
Std Dev 12.34 0.13 

Maximum 4.53 0.34 
 Upper quartile 0.43 0.04 

Median -0.60 -0.03 
Lower quartile -3.16 -0.11 

Minimum -75.99 -0.40 
Sample Size 5760 5760 

 
 In Table 2, the sample means of the error and relative error for the total cost across all experiments are negative values, 
which indicate that the model has a tendency to underestimate the total cost under the testing conditions.  This is further 
supported by the negative median values in that fifty percent or more of the data points for the total cost predicted are 
underestimated.  The purpose of our experiments was to assess the quality of the model estimates on the performance 
measures relative to the true value when the assumptions are violated.  The cost is overestimated as much as 34% from its 
true value (maximum relative error), and the cost is underestimated as much as 40% (minimum relative error).   
 In order to examine the risk that the model performs badly, we examined the probability that the model estimation will be 
greater than 10% of the true value.  Table 3 shows the summary for such probabilities from the experiments by counting the 
number of times the absolute relative error was greater than 0.1 and then dividing by the sample size of 5760.  The table 
also includes the probability when the demand rate is low (D = 0.1) and high (D = 1.0) each with 2880 samples to show the 
significance of the demand factor.  As shown in Table 3, the model does not perform well in predicting the cost.  Of the 
experiments 38% have error greater than 10% from the true value.  When the demand is high, the model performs poorly 
with 60% of the experiments having a cost within 10% of the true value.  On the other hand, when the demand is low, 15% 
of the experiments have error of greater than 10% of the true value.  The non-Poisson demand and non-constant lead-time 
conditions clearly have a significant effect on the total cost performance measure.   
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Table 3. Probability of Error Greater than 10% of the True Value from Model Estimate. 
 

Probability (absolute relative error > 10%) Performance 
Measures D = 0.1 D = 1.0 Overall 

Cost 0.15 0.60 0.38 
Sample Size 2880 2880 5760 

 
 The ANOVA tests indicated that most of the main factors (except the Qw factor) significantly affecting the cost error and 
relative error.  The main effect plots for the cost relative error showed that increasing the level of any factor (except the Qw) 
from low to high will increase the relative error: the cost is underestimated more when the D, N, Pr, Qr, D_CV, and L_CV 
are high.  Besides the main effect plots, the interaction plot of D_Cv vs. L_Cv in Figure 3 below provides important insights 
about the behavior of the cost relative error under the violated demand and lead-time conditions.  When the demand 
variability is smaller than the model assumption (D_Cv = 0.4), the cost tends to be overestimated; however, as the lead-time 
variability increases from low (L_Cv = 0.4) to medium (L_Cv = 1.0) the cost will be less overestimated, and eventually 
become underestimated when the coefficient of lead-time is high (L_Cv = 1.6).  On the other hand, while the demand 
coefficient of variation is high (D_Cv = 1.6) the cost is always underestimated and the relative error increases as the lead-
time coefficient increases from low to high.  
 
 

 
 

Figure 3. Interaction Plot of D_Cv vs. L_Cv of Cost Relative Error. 
 
 
 Based on the observations of the summary statistics and ANOVA results, it is apparent that the model tested in this study 
does not perform well when the assumptions are violated (Poisson demand to non-Poisson demand with CV of 0.4 and 1.6; 
constant lead-time to non-constant lead-time with CV of 0.4, 1.0, and 1.6).  When the demand variability is low (D_Cv = 
0.4), less backorders will occur in the actual system, i.e. the model overestimates the number of backorders and hence the 
total cost.  The model continues to overestimate the backorders and total cost until the lead-time variability is high enough 
(at L_Cv = 1.6) to increase the number of backorders in the system.  The high lead-time variability increases the 
uncertainty, and hence more chances of backordering within the system.  Nevertheless, while the demand variability is high 
(D_Cv = 1.6), the system encounters higher uncertainty that more backorders arise, i.e. the model underestimates the 
backorders and total cost.  As the lead-time variability increases, more and more backorders happen within the system, and 
the model prediction gets worse.  It is not surprising to find out that the maximum cost relative error (the most 
overestimated) in the experiments comes from the conditions of low demand and lead time variability (D_Cv = 0.4, L_Cv = 
0.4); the high demand and lead-time variability (D_Cv = 1.6, L_Cv = 1.6) correspond to the minimum cost relative error (the 
most underestimated).      
 The experimental results also indicate that the demand factor (D) has considerable impact on the model’s predictions.  
When the demand is low (D = 0.1), the model tends to give less error when estimating the cost.  When the demand is high 
(D = 1.0), more fluctuations are observed.  Higher demand provides more opportunities for uncertainty (causing error) and 
hence the model estimation is poorer.  Besides the demand factor, other factors such as the retailer batch order quantity 
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(Qr), retailer number (N) and backorder cost factor (Pr) also influence the model prediction in some ways, but no particular 
important trend was identified.   
 
 

5. CONCLUSIONS AND FUTURE RESEARCH 
 
This study evaluates the behavior of a (R, Q) multi-echelon inventory model in estimating the total system cost under 
demand and lead-time conditions differing from those originally assumed.  The tested conditions are stationary non-Poisson 
demand and random lead-time.    
 Neither overestimation nor underestimation is good for a company who uses these analytical models.  If the total system 
cost is overestimated, the company might hold too much capital for its distribution system; capital that could be invested 
elsewhere.  If the total system cost is underestimated, the company might not have enough capital to cope with the actual 
situation.  Underestimation is considered to cause more serious losses to the company because the company will need to 
spend more money, and hence the profits are reduced.  The simulation results of this study show that there was significant 
error in estimating the total system cost (tends to be underestimated) when the model assumptions are violated.  The cost 
relative error ranged between 34% and –40%.   
 A significant factor was identified from this study: the demand rate.  When the demand is low, the model will give less 
error in estimating the total cost.  Thus, the model is more suitable to be used for low demand items.  Under the conditions 
that have more demand variation and uncertainty than the model assumed, the model will recommend a policy of carrying 
less safety stock than is needed, and hence more backorders occur and the total system cost is increased.  If the actual 
demand is less variable, less backorders will happen under the recommended inventory policy, which means the model 
overestimates and influences the system to carry more inventory.    
 When considering the lead-time variability, the amount of error increases as the variance of the lead-time distribution 
increases.  Higher variability in the lead-time will require higher safety stock to maintain the same service level.  If the 
model neglects the effect of lead-time variability, more backorders will arise from the recommended inventory policy.  
Therefore, the company can gain benefit by reducing the lead-time variability, such as choosing more consistent 
transportation providers.      
 As a conclusion, the (R, Q) two-echelon inventory model considered in this study is not robust enough to provide good 
estimation for the total system cost under the considered testing conditions.  Careful consideration is needed before the 
usage of these models and the implementation of any recommended inventory policy.  We recommend that practitioners 
evaluate the potential use of multi-echelon methodologies in a simulation study before implementation.       
 Several extensions to this research are possible.  The inventory policy recommended by an analytical model depends 
upon the tradeoff between the cost components under certain assumptions.  Therefore, the estimation of the components of 
the total cost should be examined carefully to investigate the relationship of cost and its components.  One can also perform 
the analysis on a broader range of model parameters, such as lead-times of greater than one day, and larger holding cost 
factors.  Lead-times of higher than one day are more realistic in some situations; however, more variability in the system 
will be observed.  Besides, one can also consider the non-identical retailers case.  In the real world, it is very unlikely that 
the retailers are completely identical in demand, order quantity, or lead-time.  The Axsater (2000) model can evaluate this 
case; however, the most critical issue is how to define the non-identical test cases and still be able to perform a fair 
comparison on the models.  The results of this study show that factors other than the demand factor significantly influence 
the model, but another study is needed to identify the important trends and model behaviors. 
 The results of this research also provide the following future research directions: 
• Test the model by using non-stationary Poisson demand process.  Most companies experience non-stationary demand, 

and some might have a forecasting system that can capture such demand.  We have analyzed the model with a piece-
wise non-stationary Poisson demand process.  A paper is in preparation for the publication of this work.  

• Investigate to develop a more robust model, especially in estimating the average backorder level because it is the major 
factor in determining the cost.  This requires more detailed study of the lead-time demand distributions to find a more 
robust form for the representation of the system.  Heuristic approaches can also be used to reduce the complexity of 
computational efforts.    
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