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ABSTRACT 

Traditional multi-echelon inventory and readiness-based models have not fully examined the ability of effective 

transportation utilization to reduce cost, delay times, and improve readiness in the overall military logistics network.  

In this paper, we develop a simulation-based methodology for quantifying the effect of transportation options (i.e. 

truckload shipping, less-than-truckload shipping, transshipments, and express air shipping) on shipping costs, 

customer wait times, abort rates, and operational availability.  Simulation was used to develop a multi-echelon 

(depots, bases) model of regional supply chain support for aircraft spare part maintenance activities.  The resulting 

model was used for experimentation and to develop response surface equations for the behavior of the system.  The 

logistics implications of the results are discussed as well as managerial insights into the behavior of such systems.  

Our analysis indicates that focusing more on local inventory and local repair can have a significant impact on the 

operational availability of the system.  This shift should be looked at in terms of the cost of local repair resources 

compared to less transportation costs. 

 

1 INTRODUCTION 

Muckstadt (2005) presents a comprehensive overview of multi-indentured multi-echelon (MIME) spare part 

inventory systems and their analytical treatment.  The MIME system is one that has been studied in some depth over 

the years.  Through the course of these studies many mathematical-based models have been developed to explore the 

MIME system.  Sherbrooke (1968 and 1986) developed one of the first mathematical models known as the METRIC 

model, and then extended his model in the 1986 Vari-METRIC model.  Similar models were analyzed in papers by 

Muckstadt (1973), Nahmias (1979), Slay (1984 and 1996), and Graves (1985). These models provide valuable 

insight into the MIME system; however, they must make many limiting assumptions which hamper their ability to 

provide detailed analysis.  Attempts to relax these limiting assumptions inside the mathematical models lead to 

intractability.  Through the development of simulation-based models, these limiting assumptions can be relaxed, 

providing a model that captures more of the subtlety and variation in the system.  For the purposes of this paper a 

simulation model was developed based of a simplified representation of an Air Force MIME repairable parts system.  

Our model has the following characteristics: 

• Supply chain that includes bases, depots, and suppliers. 

• Multiple part types with different failure characteristics. 

• Multi-Indenture part structure with a parent component consisting of many child components.  The failure 

of the parent component is dependent on the failure its (child) components.  Multiple child components can 

be failed after an operation. 
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• Less-than-truckload and truck-load shipping options are included and transit times can be stochastic 

• Stochastic repair can occur both at the base and the depot. 

• End-item availability is the key performance measure. 

We know of no analytical model which encompasses all of these aspects, especially with regards to operating under 

stochastic conditions.  Thus, we conclude that standard queuing and inventory models would not be applicable for 

this situation.  It is also doubtful that solutions provided by analytical models under these circumstances would be 

tractable, and certainly they will not be as flexible as simulation. 

 In the past, military planners have achieved readiness rates by relying on large inventories; however 

planner now seek to implement quicker, more agile logistics systems which will reduce inventory on hand while 

improving readiness with the same or fewer dollars (Condon 1999).  To this end, military logisticians have 

undertaken a variety of initiatives, such as Lean Logistics and Velocity Management, to improve responsiveness and 

reduce the total cost of inventory by decreasing logistics pipeline times.  Within private, multi-echelon inventory 

systems, similar to that of the military’s, commercial practices have significantly reduced the need for inventory 

stockpiles by reducing pipeline times.  Using simulation, this paper assesses the effect of applying such commercial 

practices to military supply chains, and then evaluates the results.  

 

2 DISCRETE-EVENT SIMULATION DESCRIPTION 

A stochastic discrete-event simulation model was developed in Arena © 7.01 to simulate a simplified representation 

of a military repairable parts supply chain.  This model was used to compare various commercial logistic practices.  

The simulation model is both generic (it can handle any number of bases, aircraft, and parts) and data driven.  In the 

instance of the model discussed in this paper, there are six independent bases supported by a single depot.  There are 

twenty-four aircraft assigned to each squadron, three squadrons assigned to each wing, and one wing assigned to 

each base.  In this structure, there are a total of 72 aircraft assigned to each base.  This results in a total of 432 

aircraft within the system. The six bases are divided into two regions, with three bases in each region.  Figure 1 

details the structure for the model.  

 

Depot 

Base1 Base4 Base5 Base2 Base6 Base3 

Wing 1 

Squadron 2 Squadron 3 Squadron 1 

24 Aircraft 24 Aircraft 24 Aircraft 

Region 1 Region 2 
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Figure 1: Supply Chain Structure 

The model represents weapon systems (aircraft) as objects with two levels of indenture within the 

component part structure.  The first level of indenture entails aircraft which are made up of multiple Line 

Replaceable Units (LRUs).  These LRUs are in turn comprised of multiple Shop Replaceable Units (SRUs) 

constituting the second level of indenture.  Each of the 432 aircraft in the system is comprised of six LRUs, one of 

each type.  Each of the six LRU types is comprised of four SRUs yielding a total of 24 distinct SRUs per aircraft. 

LRUs and SRUs of the same type are identical and interchangeable.  Figure 2 illustrates the two levels of indenture 

used in the model.  The subscript i  denotes the LRU type, while j  denotes the SRU type.   

       
Figure 2: Hierarchy of Weapon System 

For the purposes of this model, aircraft are always categorized as being in one of three states: 

(i) Mission Capable (MC).  An aircraft is designated MC when it is capable of flying a sortie.  This status can 

correspond to an aircraft that is currently flying a sortie or is waiting to be assigned to a sortie. 

(ii) Non-Mission Capable (NMC).  An aircraft is designated NMC when one or more of its SRUs fails.  This 

status corresponds to an aircraft that is down either awaiting a spare part or currently in the process of spare 

part installation.  NMC aircraft cannot fly sorties. 

(iii) Phase Inspection (PI).  An aircraft enters phase inspection after it has accumulated a certain number of 

operating hours.  During phase inspection the aircraft is inspected, repaired, and refurbished according to 

maintenance specifications. An aircraft is designated PI when it enters the phase inspection module.  While 

in phase inspection the aircraft is not available to fly sorties; therefore, an aircraft listed as PI is also 

considered NMC. 

The percentage of time each aircraft is in each state is tracked and reported as a key performance metric of the 

simulation model.  There are other states which an aircraft in the real world system can occupy, but for this research 

the number of aircraft states was reduced to simplify the model.  In further studies the number of weapon system 

states could be expanded to include states such as Partially Mission Capable, Cannibalization, etc. 

The failure of an SRU results in the failure of an LRU and therefore the weapon system.  We modeled SRU 

failure as a stochastic failure process in which SRU Time to Failure (TTF) values are generated from a user 

specified Mean Time to Failure (MTTF) distribution according to Monte-Carlo methods.  The baseline model 

contains three levels of MTTF (in hours), each of which is modeled as an exponential distribution with some mean 

value.  The three values which were used are as follows: high-exponential (500), medium-exponential (400), low-
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exponential (300).  Eight SRU TTF values were generated from each of these three levels.  The TTF is tracked for 

each of the SRUs operating on each of the aircraft in the simulation.  While an aircraft is operational it accrues 

operating hours, and the TTF for each SRU on that aircraft is decremented equivalently.  Aircraft failure occurs 

when any of the component SRU’s TTF values equals or drops below zero.  When an SRU fails, the part is sent to 

the repair process and a spare is requested from the base’s inventory.  If there is not a spare available within the 

base’s inventory, an order is created and given a backorder status.  Repair and replenishment is discussed further in 

the next few paragraphs. 

When a SRU is deemed defective, it enters the repair process.  The model first decides whether or not the 

part can be repaired at the base level.   Due to repair resource constraints it is highly unlikely that a failed SRU can 

be repaired at the base level (Miller 1992).  In the majority of cases, the SRU must be sent to the depot for repair.  If 

the SRU can be repaired at the base the SRU enters the queue for the base repair process.  If the SRU must be 

repaired at the depot, the SRU is delayed a shipping time generated from a user specified random distribution, and 

then enters the queue for the depot repair resource.   

In the case that the part must be sent to the depot for repair, an order for the part is generated and sent to the 

depot.  This order waits in the order queue at the depot.  Priority is given to backorders in this queue.  For every part 

that is sent to the depot, an order is generated for a part to be sent back to the base.  This practice holds with a one-

for-one inventory policy.   

Upon completion of the repair process, the SRU becomes functional and the part is sent to inventory.  If the 

SRU was repaired at the base, the base’s inventory is incremented.  If the part was repaired at the depot, the depot 

inventory is incremented.  It is from this depot inventory that the orders are filled.  The first order in queue, of the 

same type as the repaired SRU, is filled.  After an order is filled, the order is shipped to the base where the order 

originated.  Once the base receives the shipment, the repair part is entered into the base’s inventory.  When a base’s 

inventory is incremented, each of the aircraft in the queue holding NMC aircraft is checked, and the first aircraft in 

queue needing a part of the same type moves to the installation process.  If there are no aircraft in need of the SRU, 

the part remains in the base’s inventory. 

 

3 SHIPPING 

Parts can be shipped between echelons in two ways: ground shipping and express air shipping. Most parts 

are shipped via trucks that pick up and drop off parts at the bases and depot; however, when an aircraft is listed as 

Mission Impaired Capability Awaiting Parts (MICAP) its part shipments are expedited.  These parts are express 

shipped, usually arriving at the final destination in one or two days but at a higher cost.  The next few paragraphs 

discuss the shipping options explored in this paper and when each is used.  

When an SRU failure occurs, its parent aircraft is listed as NMC due to the fact that all SRUs in our 

simulation model are required for mission capability.  A search is then made through the aircraft’s assigned base’s 

inventory for the needed SRU.  If the SRU is found within the base’s inventory, the SRU is installed on the aircraft 

immediately.  In this case, standard shipping is used to move the failed part to the depot and the ordered part back to 

the base, if required.  However, if the SRU is not available at the base, the SRU is given a backorder status and the 
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aircraft is listed as MICAP.  In this case, the express shipping is used to expedite the shipments.  The effect is to 

expedite the shipping of the part from the base to the depot for repair.  When the depot receives an order that has a 

backorder status, it fills the order by shipping the first available part of that type as MICAP back to the base.   

In the model, we simulate the use of both Less-than-Truckload (LTL) and the Truckload (TL) commercial 

carriers.  These two options constitute standard shipping as previously described.  The standard shipping feature is 

controlled through two variables, truck capacity and minimum batch size.  The truck capacity dictates the number of 

SRUs each truck can hold.  Minimum batch size is a percentage, which is multiplied by the truck capacity.  The 

resulting value is the smallest number of SRUs that warrant a truck trip.  For example, in the model the truck 

capacity is set to 20 SRUs.  To turn on the LTL option, the minimum batch size is set to 20%; therefore, a shipping 

point must have at least 4 SRUs waiting to be shipped to warrant a truck trip to that location.  If that location has less 

than 4 SRUs waiting to be shipped, a pickup is not ordered from the LTL carrier; however, if that location has 4 or 

more SRUs waiting, a pickup is ordered and all parts waiting to be shipped from that location are picked up by the 

carrier.  To simulate the TL scenario in the model, the minimum batch size percentage is set to 100%.  This means 

that 100% of the truck capacity must be waiting at a shipping point before a pickup is ordered.  Currently, a single 

check of the items awaiting shipment at each location is made each day at 8:00 a.m.  This is true for both the LTL 

and TL case. 

When parts receive a backorder status they are shipped with the MICAP designation.  Parts receiving a 

MICAP designation wait in a separate queue for express shipment.  At 8:00 am each day, a commercial air shipping 

service picks up all the parts needing air shipping and ships them to their respective locations both at the bases and 

the depot.  MICAP shipping times are generated from a triangular distribution with parameters (22,24,26) hours.  

These parameters were supplied by Air Force personnel as representative of next day delivery.  The model assumes 

that the express shippers have unlimited capacity.  This allows the model to rely on MICAP if the standard shipping 

option cannot keep up with the shipping volume, just as the Air Force uses MICAP to expedite shipping. 

A lateral transshipment (LTS) is defined as a shipment between locations on the same echelon of the model 

structure, in this case a shipment between bases.  In the model there are two regions of three bases each.  If the LTS 

feature is turned on, when a failure occurs, the model will first check the base inventory for a spare, then the bases 

within the region, and finally the depot.  When a search is made of the bases within a region the model selects the 

base with the most inventory available for that specific SRU.  Once such a selection is made, a shipment is initiated 

from the selected base.  If none of the bases in the region have inventory available, the order is sent directly to the 

depot.  The transshipment scenario assumes that the bases within a region are closer to each other than to the depot, 

and therefore can fill the need in a time effective manner.   

In Chapter 5 of their book, Law and Kelton (2000) discuss “six classes of techniques for increasing the 

validity and credibility of a simulation model.”  We performed the following five of the six techniques: 

1. Collect high-quality information and data on the system – We completed a thorough review of Air Force 

maintenance and supply policies as well as conducted detailed conversations with Air Force logistics managers. 
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2. Interact with managers on a regular basis – Air Force logistics managers supported our effort by providing us 

with initial system descriptions and data as well as providing feedback throughout the model development 

phase. 

3. Maintain an assumptions document and perform a structured walk-through – Throughout the model 

development process, we documented all simplifying assumptions and performed regular model walk-throughs 

with our Air Force contacts. 

4. Validate the output from the overall simulation model - A series of simulations were run using realistic data 

inputs allowing us to compare our model outputs to target values set by the Air Force.  In particular, we 

compared our operational availability rates and aircraft sortie abort rates to Air Force operational specifications 

and concluded that we were within tolerance. 

5. Animation – Animation was used in testing and debugging the simulation to verify and validate the detailed 

workings of the model. 

After performing these verification and validation techniques, we then developed a set of experiments to 

explore the effect of using commercial shipping practices along with other factors on the Air Force supply chain.  

These experiments provided an understanding of the factors that contribute to the availability of aircraft within the 

Air Force’s supply chain.  This understanding will allow logistics planners to better grasp the effect that their 

decisions may have on the operational performance of the system.   

 

4 EXPERIMENTAL DESIGN 

A factorial experimental design was used in our experimental studies.  In a full factorial design, design points are 

investigated at all possible factor combinations.  The experiments identify the main effects and the interactions 

between the factors.  In this paper, there are 11 factors under study, and each factor has two levels.  This is 

represented as a 2k factorial design.  If a full factorial design were run for the 11 factor experiment described above 

it would require 11
2 = 2048 runs.  Therefore, in our experiments, a fractional factorial design was utilized.   In a 

fractional factorial design, a reduced number of runs are used to analyze the main affects and interactions between 

the factors, albeit with less granularity.  A 1/16 fractional design was chosen, requiring 128 runs of the experiment, 

rather than the full 2048 runs.  This experimental design is termed a Resolution V Design. In a Resolution V Design, 

no main effect or two factor interaction is confounded with any other main effect or two factor interaction 

(Montgomery and Runger 1999).  Table 1 lists the 11 factors examined in this paper with a brief description of each.  

Table 2 outlines the factor values used during experimentation.  The values listed in Table 2 are important later in 

understanding the results of our experiments. The factors, Shipping Option (A), MICAP (D) and Transshipment (K) 

are either present or not present, with (-1) indicating not present and (+1) indicating present.  The factors, Sortie 

Duration, Sortie Frequency, Repair Time, Time to Failure, Pre/post Flight Operations, and Unscheduled 

Maintenance have two levels where the value assigned to the low level (-1) is the probability distribution specified 

in the table and the value assigned to the high level (+1) represents a 20% increase over the low level.  The 

Inventory Position factor controls the allocation of inventory to local or depot level.  There are 38 spares total per 

SRU in the system under each scenario.  For the Low (-1) level there were 3 spares for each SRU held at each of the 
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6 bases and 20 spares for each SRU held at the depot.  For the High (+1) level there were 6 spares for each SRU 

held at each of the 6 bases and 2 spares for each SRU held at the depot.  For the Local Repair factor low (-1) 

indicates that only 1% of the parts can be repaired locally while the high (+1) indicates that 25% of the parts can be 

repaired locally. 

Table 1: Factors Examined and Descriptions 
Factors Description 
Standard 
Shipping  

This determines whether Truck Load or Less Than Truck Load shipping will be used. 

Sortie Duration This factor refers to the actual length of a sortie.  
Sortie Frequency The number of sorties assigned to a base each day.  
MICAP This determines whether express shipments will be used. 
Repair Time Repair time is the delay time for the repair process.   
Inventory 
Position 

In the model, Inventory is set up to be either centralized or decentralized.  Centralized indicates 
that more of the system wide inventory is held at the depot while, decentralized means that 
more of the inventory is held at the bases. 

Time To Failure This factor refers to the time to failure of individual SRUs.  
Pre/Post Flight 
Maintenance 

This factor refers to all the maintenance operations that are required to prepare an aircraft for 
flight and maintenance operations, which are performed after the flight has taken place.  The 
operations currently included in this factor are:  Refuel/Weapons Load, Engine Start, Final 
Systems Check, and Taxiing, Pre-Flight Check, Parking and Recovery, and Service/Debrief. 

Unscheduled 
Maintenance 

This encompasses all operations associated with the failure of a part.  The operations included 
are:  Troubleshooting, Remove Part, Wait for Part to Issue From Supply, Delay for Paperwork, 
Installation, Operational Check, Operational Check, Signoff Discrepancy, Document Corrective 
Action 

Local Repair This dictates the percentage of parts that can be repaired at the base level.   
Lateral 
Transshipment 

This factor indicates whether or not transshipments can be used as a source of supply. 

 

Table 2: Factor Values Used in Experiments 
 Factor Low High 
A Shipping Option LTL TL 
B Sortie Duration Triangular (.333,1.747,2) Triangular (.333,1.747,2)*1.2 
C Sortie Frequency ANINT(Uniform(56,67)) ANINT(Uniform(56,67))*1.2 
D MICAP On Off 
E Repair Time Exponential (8) Exponential (8)*1.2 
F Inventory Position Depot Local 
G Time to Failure Exponential (300) 

Exponential (400) 
Exponential (500) 

Exponential (300)*1.2 
Exponential (400)*1.2 
Exponential (500)*1.2 

H Pre/Post Flight Operations Normal Levels Normal Levels +20% 
I Unscheduled Maintenance Normal Levels Normal Levels +20% 
J Local Repair 1% of parts repaired locally 25% of parts repaired locally 
K Transshipment On Off 

 

Each simulation was given a warm-up period, a run length, and a specified number of replications.  Initial 

tests were used to establish the warm-up period and run length for the experiments.  In these tests, time persistent 

response data was analyzed both statistically and graphically.  These initial tests showed that after six months the 

model appeared to reach a steady state, and that a year of data collection would allow us to make statistical 

inferences based on our results.  The simulation was set to run 128 instances, each of which represents a different 
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combination of factors or a single design point within the experiment.  At the beginning of each of these instances, 

the level of each of the factors is read into the model. The simulation is warmed up at the beginning of each 

instance, and the system statistics were cleared after each of the runs.  Therefore, the simulation model collects data 

for 128 independent design points and does not use the method of common random numbers.  By not using common 

random numbers, we are able to directly apply standard statistical analysis techniques and do not need to rely on the 

more complicated techniques required when the design points are not independent.  Each of these 128 design points 

was replicated five times using a different stream of random numbers for each of the five replications, yielding a 

total of 640 independent observations. 

 

5 DATA AND DATA ANALYSIS 

For this experiment, eight different responses were used to measure the effect that the factors had on the system.  

The Table 3 lists these responses along with a brief description. 

Table 3: Responses Used in Experiment and Descriptions 
Responses Description 
Operational 
Availability  

This is the ratio of time a plane is either available to fly or flying to the time a plane is 
unavailable due to scheduled or unscheduled maintenance. 

Abort Rate This is the ratio of sorties aborted to sorties scheduled.  Sorties may be aborted due to lack of 
planes or a failed part in pre-flight or in-flight inspection. 

Customer Wait 
Time 

Customer Wait Time refers to the time in hours from when a plane fails and enters unscheduled 
maintenance until the plane is available to fly again. 

Total 
Transportation 
Cost 

In our model only factors connected to shipping contribute to the total cost.  These factors are 
MICAP, ground shipping, and transshipment.  Each of these factors was assigned a cost per 
shipment.  Data was collected for the number of each type of shipment, and that number was 
multiplied by the derived cost per shipment to yield the cost o each factor.  The Total 
Transportation Cost is the sum of these three factor costs. 

Sorties Flown This is the cumulative number of sorties flown by an individual aircraft over the course of an 
experimental run. 

Flight Hours This is the total number of flying hours accrued by an individual aircraft over the course of a 
replication. 

Times Failed This is the total number of failures incurred by an individual plane over the course of a 
replication. 

Total 
Backorders 

This refers to the total number of backorders that occurred within a replication.  A backorder 
occurs when a part fails and a replacement is not available in the bases inventory. 

 

The first four responses listed in Table 3, Operational Availability, Abort Rate, Customer Wait Time, and 

Total Transportation Cost, were considered the most important metrics for scenario performance.  The remaining 

responses were taken into account while reviewing scenarios to identify outliers and to evaluate the operational 

validity of the scenarios.  Summary statistics were calculated for each of the eight responses to provide insight as to 

how the data behaves across all scenarios.  Table 4 lists the summary statistics for the data collected on each 

response.  The summary statistics included in Table 4 are: x - Sample Mean, s- Standard Deviation, and s.e. - 

Standard Error.  The standard error is the standard deviation divided by the square root of the sample size.  In this 

case there were 640 observations.  The data values given in Tables 4 and 5 are for a 365 day year. 
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Table 4: Response Summary Statistics 
Response x  s s.e. 
Operational Availability 75.28 5.75 0.2270 
Abort Rate 0.14     0.08  0.0033 
Customer Wait Time (Hours) 70.78     19.80    0.7830 
Total Transportation Cost 72,244 44,770      1,770 
Sorties Flown 294.26     20.21  0.8000 
Flight Hours 413.66      27.33        1.0800 
Times Failed 27.05      2.42       0.0960 
Mean Total Backorders 3713.20 1466.9  58.0 

 

Table 5 gives statistics that describe the distribution of each of the responses.  Each data set is divided into 

four quartiles containing a quarter of the data points each. The four quartile values are defined as follows: min is the 

minimum value, Q1 is the data point one-quarter through the data set, x~  is the median, Q3 is the data point three-

quarters through the data set, and max is the maximum value. 

Table 5: Response Distribution Statistics 
Response min Q1 x

~  Q3 max 
Operational Availability 57.253 72.06 76.82 79.42 84.52 
Abort Rate 0.017     0.07 0.120    0.23    0.36    
Customer Wait Time (Hours) 45.628     56.65   64.01      84.83 129.25    
Total Transportation Cost 11,580 37,247     63,528      101,929 198,805     
Sorties Flown 238.240      283.59 289.96  306.04 346.68      
Flight Hours 336.470      391.76 418.49      439.38 454.36     
Times Failed 22.660      25.38 26.45      29.11 31.48     
Mean Total Backorders 578     2579 3631.5 4717.5 7478     

 

The values in Table 5 show that the data collected on each response covered a wide range of values, and a 

significant portion of the data falls near realistic response targets.  In our experimental runs 25% of the data for: 

Operational Availability was above 79.42%, Abort Rate was below 7%, and Customer Wait Time was below 56 

hours.  The wide range of response values was due to the large number of factors varied in our experiment.  The 

large number of the factor combinations explored in this experiment would never logically be used in the real 

system (e.g. shifting inventory to the depot level and repair resources to the base level); however, these factor 

combinations were important in our statistical study of how the factors affected the response values.  Due to the fact 

that this experiment is a relative comparison, some deviation in the mean of the response values from an actual Air 

Force repairable parts system do not affect the main results presented in this paper.  

  Table 6 provides more information about the distribution of the response data.  The information provided in 

Table 6 details the probabilities that the associated response fulfills the logical statement listed.  For example, in the 

case of Operational Availability, 0.186  80)P(X =>=  indicates that across all design points there is an estimated 

probability of 0.186 that operational availability is greater than or equal to 80%.  Also, 65% of the data for Customer 

Wait Time is below 72 hours or 3 days.  This data shows that for each response value our experimental results 

ranged very close to the targets set for an actual Air Force repairable parts system.  The data establishes the 

reasonableness of our experimental design by matching our experimental results with an actual system.  While this 
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type of data was primarily used for validation, it is also of interest because it indicates that we have captured a wide 

range of interesting and realistic design scenarios in our experiments.  

Table 6: Response Probabilities 
Operational Availability P(x >= 80) 0.1859 
 P(x >= 75) 0.6172 
Abort Rate P(x <= .05) 0.1750 
 P(x <= .15) 0.5453 
 P(x <= .20) 0.7016 
Customer Wait Time (Hours) P(x <= 24) 0.0469 
 P(x <= 72) 0.6547 
 P(x <= 96) 0.8734 
Total Transportation Cost P(x <= 25,000) 0.1547 
 P(x <= 50,000) 0.3516 
 P(x <= 75,000) 0.6125 

 

The relationships between some of the responses were analyzed graphically.  Of specific interest is the 

relationship between Total Transportation Cost and Operational Availability.  To reduce the total number of plotted 

points from 640 to 128, the five replications of each design point were averaged providing an estimate of the 

response for each design point.  This reduced the variability in the graph to provide a clearer picture of the data 

trends.  Figure 3 plots Operational Availability vs. Total Transportation Cost and shows the diminishing return 

between Operational Availability and Total Cost.  This is a common trend when comparing performance metrics 

with total cost.  There is usually a point at which spending increases faster than the improvement provided by the 

increased expenditure.  Shipping plays a large role in this trend of diminishing returns.  There are many ways to 

reduce customer wait time and increase operational availability through expedited or express shipments i.e. MICAP, 

but the cost of such practices grows at a rate that soon diminishes or even overtakes the value returned.    

Operational Availability vs. Total Cost
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Figure 3: Operational Availability vs. Total Transportation Cost 

Given the summary statistics on the behavior of each response across all scenarios, we know that our 

experimental design is representative of realistic operating conditions and that our response values cover the design 

space well.  The next step was to take a detailed look at how each of our factors affected the response values 

discussed.  Linear regression was used to quantify the effect that each of the factors had on each of the responses.  

This was completed using the software package MINITABTM.  A response surface model was developed for each of 
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the responses using the fractional factorial design to fit a linear regression equation between the factors of interest 

and the responses.  Included in this analysis were all the main effects along with all first order interactions.  The 

high-resolution or our design allows the inclusion of all first order interactions with complete confidence that there 

will be no confounding coefficients.  Each of the eight regression formulas contain all the main effects as well as 

their interactions coming to a total of 66 terms.  The regression formulas take the general form  

 exxxY
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where Y is the response level, 
0

!  is the intercept term, 
h
x  is the factor level, and 

h
!  is the first-order factor 

coefficient describing the effect the factor has on the response, and jh,! is the second order factor coefficient.  This 

general form contains 66 terms and is very cumbersome.  To reduce the number of terms included in the regression 

formulas, we evaluated the contribution that each of the included factors has within the regression models.  We 

accomplished this by using the p-value.  The p-value is the smallest level of α (alpha) at which the term can be 

deemed significant, where α is defined as the acceptable probability of error (Montgomery 1999).  A p-value is 

generated for each of the main effects as well as the first order interactions.  For this experiment, we chose an α of 

0.01, and any factor with a p-value less than or equal to 0.01 was deemed to have a statistically significant effect on 

the response for this sample size.   

The estimated effects and the regression coefficients were used to determine the practical significance of 

the factor in relation to the response.  The estimated effect is defined as the change in the response produced by a 

change in the factor (Montgomery and Runger 1999).  The regression coefficient is the actual coefficient in the 

regression formula associated with the factor.  An examination of these statistics for a factor indicates the estimated 

change in the response experienced if the level of the factor is changed.  In other words, these statistics describe the 

sensitivity of the response to changes in the associated factors.  It is important to note that even if a factor is deemed 

statistically significant an examination of the estimated effect and regression coefficient may reveal that the factor is 

practically insignificant. 

With the knowledge gained through these statistics, the regression models for each of the responses were 

simplified.  This was done by removing the factors from the model that were either statistically or practically 

insignificant.  The R2 (coefficient of multiple determination) value was used as a metric for the change induced in 

the model’s fit.  Reducing the number of factors in the model will reduce the amount of variation explained by the 

model, but we can afford to be slightly less explanatory for the sake of simplicity.  Table 2 associates a letter with 

each of the factors considered in the experiments.  Table 7 lists the simplified equations that were developed for the 

four most important responses along with the resulting R2 value.  We will focus on these four responses for the rest 

of our discussion.  The factor interactions are signified by an asterisk between two factors (i.e., A*B).  The 

Appendix lists the ANOVA results for the operational availability response surface equation.  Similar analysis was 

done for the other equations, but for the sake of brevity not included in this paper.  A full detailed report provided to 

the Air Force Research Laboratory contains these additional details and is available upon request from the authors. 
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Table 7: Simplified Regression Equations 
Simplified Regression Equation R2 

Operational Availability (OA) 

J))*(D(1.272  G))*(D(0.684  D))*(A(-0.865  J)(2.034  I)(-1.05  

H)(0.566  G)(2.488  F)(0.549  D)(-3.593  B)(-1.104  A)(-1.432  75.279 OA 

+++++

++++++=
 

93.99% 

Abort Rate (AR) 

J)(-0.01146  H)(0.01821 

 G)(-0.01295  D)(0.01912  C)(0.06234  B)(0.03938  0.13783  AR

++

++++=
 

91.86% 

Customer Wait Time (CWT) 

J))*(D(-5.5  D))*(A(3.931 

 J)(-8.116  I)(3.749  G)(-3.23  D)(13.858  A)(5.8  72.783  CWT

++

+++++=
 

92.42% 

Total Transportation Cost (TTC) 

J))*(D(10,978 G))*(D(7,165  F))*(D(8,793  D))*(A(-6,525 K)(-5,317 

 J)(-14,563  G)(-9,265  F)(-9,014  D)(-33,774  A)(-10,224  72,244  TTC

+++++

+++++=
 

97.16% 

 

The initial regression models contained 66 terms while the average number of terms included in the 

reduced models for these four responses is only 8.5.  The factors within the equations listed in Table 7 have a large 

impact both statistically and practically on the value of the associated response.  The coefficient assigned to each 

factor in the regression equations indicates the magnitude of the effect that a specific factor will have on the value of 

the response.  For example, in the equation for Operational Availability factor D has a negative impact with 

magnitude 3.593 while factor G has a positive impact of 2.488.  For every case where factor D takes on its high 

value, Operational Availability is reduced by 3.593.  In this manner these equations can be used as rough predictors 

for the response based on factor values.  Table 8 gives a break down of the most influential factors across all eight 

responses.  The Number column lists the number of simplified regression models that include the associated factor, 

and the percent column lists the percent of the simplified regression models that include the associated factor.  Table 

8 accounts for all eight of the responses for which data was collected. 
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Table 8: Factor Influence All Responses 
Factors Number   Percent 
A  6 75% 
B 6 75% 
C 4 50% 
D 8 100% 
E 0 0% 
F 2 25% 
G 8 100% 
H 4 50% 
I 2 25% 
J 8 100% 
K 1 12.5% 
A*D  4 50% 
B*C 2 25% 
D*F  1 12.5% 
D*G 4 50% 
D*J 6 75% 

 

The most influential factors are MICAP, TTF, and Local Repair.  These factors are included in all of the 

simplified regression models.  Table 8 indicates which factors, when changed, influence the greatest number of 

responses.  It is notable that one factor, repair time, was not significant in any of the simplified models.  This is due 

to its relative length in time as compared to other delays that have more effect on the system i.e. shipping time.  This 

result does not mean that repair time is unimportant.  In fact this result indicates that future modeling should focus 

on developing the relationship between the repair process and operational availability.  

The regression equations developed from the simulation model allow direct what-if analysis without 

rerunning the simulation model.  The regression equations also provide managerial insight into the behavior of this 

class of system.  For example, within the range of the experimental design, in order to minimize transportation cost 

without any performance constraints, the regression equations recommend Scenario 1 in Table 9.  In Table 9, 

Scenario 2 represents the case of maximizing operational availability with no constraints, and Scenario 3 represents 

minimizing transportation cost while ensuring an operational availability of at least 75%.  For Scenario 2 high 

operational availability is achieved at a significant increase in the cost.  This scenario also achieves low abort rates 

and low customer wait times, and it is achieved essentially by using less-than-truck load shipping.  Scenario 3 

indicates that we can still get low transportation cost and achieve reasonable operational availability by using full 

truck load shipping, improving reliability, and using MICAP expediting.  All three scenarios used more local 

inventory and more local repair capability. 
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Table 9: Managerial Insight Scenarios 
 Factor Scenario 1 Scenario 2 Scenario 3 
A Shipping Option Use FTL Use LTL Use FTL 
B Sortie Duration Shorter sorties Shorter sorties Shorter sorties 
C Sortie Frequency Less sorties Less sorties Less sorties 
D MICAP Use MICAP No MICAP Use MICAP 
E Repair Time Speed up repair Speed up repair Speed up repair 
F Inventory Position More local More local More local 
G Time to Failure Lower failure rate Higher failure rate Lower failure rate 
H Pre/Post Flight Operations Normal Normal + 20% Normal + 20% 
I Unscheduled Maintenance Normal Normal Normal 
J Local Repair Repair more locally Repair more locally Repair more locally 
K Transshipment No transshipment No transshipment No transshipment 
 Operational Availability 78.004% 85.274% 79.136% 
 Abort Rate 0.0126 0.01079 0.04903 
 Customer Wait Time 75.777 47.46 75.77 
 Transportation Cost $10678 $44842 $10678 

 

6 CONCLUSIONS 

The focus of this research was to determine the effect of different shipping policies have on a military MIME supply 

chain.  Also of interest were the relative effects when compared with other influential factors present in the system.  

In order to quantify the factor effects, we developed a set of experiments which allowed us to create regression 

meta-models for key performance measures.  The regression meta-models described the effects of our experimental 

factors and their combinations on the performance measures and provided us with insights into the influence of the 

factors on a MIME system. 

The largest contributing factors were MICAP, TTF, Local Repair, Shipping Option, Sortie Duration, and 

Inventory Position.  Time to Failure and Sortie Duration were also influential in our experiments; however, the fact 

that they are significant may be less interesting from a practical standpoint.  It is easy to see that more reliable parts 

within a MIME system will allow better performance.  It does point out that investing in more component reliability 

should not be neglected.  Along the same lines, if sortie duration is increased, more flight hours will accrue per 

aircraft resulting in an increase in failures; however, it is difficult to reduce the duration of sorties by any practical 

means without compromising mission objectives. The other four factors have greater implications. 

Over the past decade (absent active combat) logistical defense budgets have been reduced.  This in turn has 

impacted the way the military supply chain operates.  Inventory levels in the supply chain have been falling along 

with the budgets.  Today the military supply chain is being asked to be “more flexible and responsive” with less 

inventory and “at a lower total cost.”(Condon and Cunningham 1999)  The pressure to reduce both inventory and 

spending has induced stress on the military supply chain.  As the inventory levels fell through the 1990s and into the 

present, it became harder to maintain a reliable flow of material.  The Air Force has compensated for the low 

inventory levels by using express carriers, and they have been successful; however the cost of relying on these 

express carriers is high.  The MICAP factor simulated the use of express carriers to expedite shipping times, and was 

one of the most influential factors in our experimentation.  The cost of MICAP shipments was the largest cost 

component in our simulation model.  Figure 3 illustrates a diminishing returns relationship between transportation 

cost and operational availability.  The cost of MICAP shipments was the largest driver in the shape of this curve.  
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The use of express carriers is beneficial up to a point, but relying on the carriers soon becomes counter productive, 

becoming a money sink without providing proportional benefit.  Reducing the reliance on MICAP in an Air Force 

type supply chain would both reduce transportation cost and force the exploration of new opportunities for 

improvement.  MICAP does provide some benefit, but exploring other means for increasing operational availability 

could provide more benefit for the cost involved.  Masciulli and Cunningham (2001) indicate that a redefinition of 

the policies governing MICAP shipments along with selection rules when it comes to choosing a commercial carrier 

would be beneficial from a cost standpoint.  Their research indicated only a small percentage change in cost, while 

our research indicates significant cost reductions through greatly reducing if not eliminating MICAP without drastic 

effects on the other responses.  Our experiments indicate that the emphasis should not be internal to the MICAP 

policies, but should instead be external, focusing on the inventory policies, inventory structure, and other lower cost 

shipping options. 

There are many alternatives which can be explored to reduce the Air Forces reliance on MICAP shipments.  

Carter and London (2002) explore the SRU inventory levels.  They indicate that current inventory levels for specific 

SRUs are not meeting demand while others are overstocked.  In addition, they argue that the probability of LRU 

failure should drive inventory levels.  They also make the point that, when setting inventory levels for repairable 

parts, a cost balance should be reached between the one time cost of purchasing the item and the cost of a backorder 

for that item.  Larvick (2000) discusses the logistics system as a whole and describes “reach-back capability”.  

Reach-back capability refers to the greater ability of the upper echelon levels to respond to variation at the lower 

levels.  In Larvick’s model, increased sortie duration and frequency result in more failures at the base level.  He 

refers to reach-back as the ability of the higher echelons to respond to this change.  This concept ties directly into the 

idea of increased supply chain visibility.  Murphy (1999) explores the possibility of “Collocating Air Force weapon 

systems inventory with the Defense Logistics Agency premium service facility.”   These research efforts touch on 

just a few areas where there are opportunities for system improvements which could result in a military supply chain 

that is robust and reliable, but does not rely so heavily on costly MICAP shipments. 

The two other shipping factors that were investigated in our experiments were Shipping Option (LTL/TL) 

and Transshipment.  The Shipping Option factor explored the difference in using LTL vs. TL shipping.  In our 

experiments, a cost benefit was seen when using the TL shipping option; the lowest costs were realized in scenarios 

using TL shipping.   These cost differences, however, were overshadowed by the cost of MICAP shipping.   In the 

same light, the Transshipment factor did not have a large effect in our experiments.  This, again, was due to the fact 

that the MICAP option had a dominating effect.  In future models, these shipping options as well as direct shipments 

and scheduled deliveries should be explored in a more detailed fashion outside the shadow of MICAP. 

The Inventory Position factor also played an important role in the response values.  Shifting inventory to 

the base level was beneficial.  This worked in conjunction with increasing the Local Repair capabilities.  In other 

words the best performing scenarios had more repair resources at the base level along with more of the spares 

inventory being pushed to the bases.  The cost of these capabilities was not fully explored in our experiments.  

Extending more of the repair resources to the base level would be a costly operation, but the benefits could be far-

reaching.  The Air Force’s new MICAP prevention program through proactive demand leveling (PDL), see Blazer et 
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al. (2004) is a step in this direction.  In this approach, demand is analyzed at both the base and the system level to 

gain a better understanding of bench stock requirements.  Bench stock is material on hand at the base for repair at 

the base.  This approach recognizes (at a fundamental level) how bench stock can improve maintenance and repair 

activities.  By shifting the focus to having materials closer to initial demand and point of use, operational availability 

can be directly improved.  More repair capability at the base implies a return to three levels of maintenance. Our 

experiments in this regard showed benefit over two levels of maintenance in operational availability and 

transportation cost.  Our study showed that using three levels of maintenance is a viable option to reduce 

transportation cost and improve fleet availability, and should be investigated in future models along with other 

inventory and repair options.   

There are many opportunities for expansion of the simulation model developed for this paper. The 

following are areas where model expansion would be of benefit to future studies: repair process, cannibalization, 

queue prioritization, sortie generation and assignment, inventory policies and costing, shipping alternatives, policies, 

and interaction.  Investigating these areas would allow us to further explore the findings presented in this paper, 

specifically, the influence of inventory and repair resource allocation policies and their tradeoff with reliance on 

express shipping.  Future work has already been funded and is in the beginning stages for expanding the model 

presented in this report to explore the Sortie Generation process.  The goal is to extend the current simulation and 

mathematical modeling methodologies to assist unit-level maintenance managers in analyzing the effects of different 

sortie scheduling policies and identifying risk in different scheduling plans.  The extended model will encompass 

sortie generation, maintenance activities, and the effects of limited equipment and inventory. 

 

ACKNOWLEDGMENT  

This material is based upon work supported by the Air Force Research Laboratory Logistics Readiness Branch 

(AFRL/HEAL).  Any opinions, findings, and conclusions or recommendations expressed in this material are those 

of the author(s) and do not necessarily reflect the views of the United States Air Force. 

 



 17 

APPENDIX 
Estimated Effects and Coefficients for Operational Availability 
 
Term         Effect      Coef     SE Coef       T      P 
Constant               75.279     0.05626 1338.02  0.000 
A            -2.864    -1.432     0.05626  -25.46  0.000 
B            -2.209    -1.104     0.05626  -19.63  0.000 
D            -7.187    -3.593     0.05626  -63.87  0.000 
F             1.098     0.549     0.05626    9.76  0.000 
G             4.975     2.488     0.05626   44.21  0.000 
H             1.131     0.566     0.05626   10.05  0.000 
I            -2.101    -1.050     0.05626  -18.67  0.000 
J             4.068     2.034     0.05626   36.15  0.000 
A*D          -1.730    -0.865     0.05626  -15.37  0.000 
D*G           1.369     0.684     0.05626   12.16  0.000 
D*J           2.544     1.272     0.05626   22.61  0.000 
 
Analysis of Variance for Operational Availability 
 
Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           8     18069.5    18069.5    2258.69  1E+03  0.000 
2-Way Interactions     3      1814.3     1814.3     604.76 298.52  0.000 
Residual Error       628      1272.2     1272.2       2.03 
  Lack of Fit        116      1210.3     1210.3      10.43  86.22  0.000 
  Pure Error         512        62.0       62.0       0.12 
Total                639     21156.0 
R2 – 93.99% 
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