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Abstract 
 
This paper presents a meta-forecasting approach for recommending the most appropriate forecasting technique for 
an intermittent demand series based on a multinomial logistic regression classifier. The meta-forecaster is based on a 
mapping between a demand attribute space and the best forecasting technique. The demand attribute space is based 
on the estimates from the demand series of the following attributes: probability of non-zero demand after zero 
demand, probability of non-zero demand after non-zero demand, mean demand, demand variance, lag 1 correlation 
coefficient of the interval between non-zero demand and lag 1 correlation coefficient. Based on the mapping, the 
best forecasting technique for an unknown demand vector can be predicted. Given the demand series, the demand 
attributes are estimated and then the classifier is used to predict the best forecasting technique. After training, the 
classifier was tested. The results indicate an accuracy rate of 70.87% for the recommended best forecasting 
technique; and an 87.94%accuracy rate for the recommended top two forecasting techniques. 
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1. Introduction and Motivation 
The focus of this research is on inventory system with intermittent demands. Intermittent demand is characterized by 
demand data that has many time periods with zero demands. However, other definitions can be found in the 
literature [14] [3] [9], for intermittent demand. Intermittent demand is hard to model using conventional distributions 
and is hard to forecast. It is commonly found in vital military supply networks. The Naval Aviation Maintenance 
Program (NAMP) of the US Navy is a multi-echelon supply network with 3 levels. At the lower level the demand 
for a reparable spare part arrives when the part fails. The demand at the higher levels occurs when the lower levels 
are unable to repair the failed spare part. The repair cycle may include shipping time, processing time, repair time, 
waiting time, and delivery time. Because of the repair cycle as well as the failure cycle, the demand for repair and 
spare parts is often intermittent in nature. This research is motivated by Varghese [20] [21], in which a naïve 
categorization (classification is the term used in statistics papers) scheme for intermittent demand was created. Each 
demand category was mapped to an intermittent demand forecasting technique most appropriate for that demand 
category.  Each demand category is characterized by its demand attributes ��, �����  and �	,��: probability of zero 
demand, coefficient of variation of non-zero demand, lag 1 correlation coefficient of non-zero demand respectively. 
Varghese [20] [21] showed that this naïve mapping scheme can be used to choose an appropriate forecasting 
technique for demand series that are similar to those used to develop the classification scheme. First, the estimates of 
the three demand attributes (demand attribute vector) of the SKU (stock keeping unit) are computed. Second, the 
corresponding demand category is identified and then the forecasting technique to which the demand category is 
mapped is chosen. This meta-forecasting technique was applied on a real data and was found to reduce the forecast 
error, when compared with the existing technique.  
 
A meta-forecaster is relevant in large scale inventory systems where inventory managers encounter decision making 
for the selection of a forecasting technique. It is a tool used to select the best forecasting technique for a given 
demand series.  The selection of the best forecasting technique for a given demand series can be approached in 
several ways. The most common approach is to select a forecasting technique that minimizes the forecast error using 
the available demand history. Another approach is to forecast based on several forecasting techniques and 
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subsequently combine the forecasted values into a single forecast. Armstrong [4] recommends this approach instead 
of selecting a single forecasting technique. This paper develops an approach, which we term meta-forecasting.  In a 
meta-forecasting approach, one creates a classification scheme for a demand attribute space (e.g. a 6-dimensional 
vector space of demand attributes). Our classifier handles categorical responses (best forecasting technique) that are 
nominal. There are various multi-variate classification approaches that can be considered. Hastie et al. [7] lists 
Nearest neighbor classification, Multinomial logistic regression, Artificial neural network, Discriminant analysis, 
Separating hyper plane, Support vector machine, Flexible Discriminant analysis etc. to train data for classification. 
Our meta-forecaster is based on classification using multinomial logistic regression. The classification scheme 
requires constructing a demand attribute space and mapping to its best forecasting technique. This is followed by 
training this data and thus developing a classification scheme. The classification scheme holds the demand attributes 
vector and the best forecasting technique associated with it. This research considered the forecasting techniques: 
moving average, simple exponential smoothing, Syntetos’ approximation method [18], and a cumulative average 
(CA) forecasting method. We evaluated the efficacy of the classification scheme using the standard accuracy test for 
statistical learning techniques, which is discussed in section 2.2. An evaluation of the meta-forecasting approach 
with the combining-forecast approach in Armstrong [4] is being considered for future work. 
 
1.1. Intermittent Demand and Categorization Scheme 
The literature refers to the “hard to forecast” demand scenarios as intermittent demand, lumpy demand, erratic 
demand, sporadic demand, slow-moving demand etc. and often these words are used interchangeably which 
amounts to much confusion. As previously discussed, the demands are generally characterized by the attributes: 
intermittence (or sporadicity) and lumpiness. Usually, intermittent demand (or sporadic demand) is defined as 
demand occurring randomly with many time periods with zero demands. However, this limits the definition to the 
attribute of intermittence or sporadicity. Silver [14] proposed a definition for intermittent demand as “infrequent in 
the sense that the average time between consecutive transactions is considerably larger than the unit time period, 
the latter being the interval of forecast updating.” Smart [3] defined intermittent demand as a demand series with at 
least 30% zero demand. Representative US Navy [13] inventory managers consider those demand series with less 
than or equal to 60 - 70% non-zero demands as intermittent. Johnston et al. [9] proposed that if the mean interval 
between non-zero demands is 1.25 times greater than the inventory review period, the demand series can be 
considered as intermittent. Most of the definitions of intermittent demand (or sporadic demand) do not include the 
demand attribute: lumpiness. Slow demands are usually defined as those with infrequent demands, which occur in 
very few units [10] [18] [25]. Slow demands are usually intermittent demands. Meanwhile erratic (or irregular) 
demand is described as in [18] as patterns with high variability in non-zero demands. Syntetos [18] based his 
definition on the demand size and excluded demand incidence and so did Silver [14]. Syntetos [18] defined lumpy 
demand as those demand patterns with some zero-demands and with non-zero demand having high variability. He 
considered all lumpy demands as intermittent demands; however not all intermittent demand is lumpy demand. 
Ward [23] also used intermittent demand and lumpy demand interchangeably. These types of demand scenarios 
overlap with similar characterizations of intermittent demand. In this paper we view these demand scenarios by the 
difficulty to forecast. Some of the previous literature on demand classification on demand attributes is William [24] 
and Syntetos [18] [19]. William’s categorization scheme [24] is one of the earliest ones of its kind and is based on a 
concept called variance partitioning, in which the variance of the lead time demand is split, to classify the demand. 
His classification represented intermittence, by how often the demand occurs during the lead time. He also 
considered the variance of non-zero demand, commonly called as lumpiness. Syntetos et al. [18] [19] in their 
research on intermittent demand forecasting techniques, proposed a demand categorization scheme with 
recommendations for an appropriate cut-off value for squared coefficient of variation and mean interval between 
non-zero demands.  
 
The research literature on demand characteristics usually considers only intermittence and lumpiness. Varghese [20] 
[21] considered dependence (through �	,��) in addition to intermittence and lumpiness. In this research we expand 
the demand attribute space to dimensions: ��	, �		,  ,�� , �	 and �	,���, probability of non-zero demand after zero 
demand, probability of non-zero demand after non-zero demand, mean demand, demand variance, lag 1 correlation 
coefficient and lag 1 correlation coefficient of the interval between non-zero demand. These demand attributes are 
expected to measure not just the intermittence and lumpiness but also the burstiness of demand. Bursty demand is 
seen usually in telecommunications network; it refers to a demand scenario in which non-zero demands arrive 
consecutively. Bursty demand can be intermittent demand; there can be time periods when there is no demand and 
when a demand occurs, it is followed by consecutive non-zero demands. It is most likely that the highly bursty 
demands are those with highly positively correlated intervals between transactions. An expanded demand attribute 
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space, including burstiness may be able to improve the accuracy of the classifier.  The application of the 
classification scheme will be in the mapping of the demand attribute vector to its best forecasting technique. Using 
this mapping, we can predict the best forecasting technique for a given demand scenario. 
 
1.3 Intermittent Demand Forecasting 
The simpler traditional forecasting methods like simple exponential smoothing and moving average are often 
unsuitable in intermittent demand scenarios. There are several forecasting techniques relevant for intermittent 
demand. These techniques are discussed in detail by Varghese [20] [21]. Croston’s [6] approach and its variant 
Syntetos [18] are two of the primary techniques. Syntetos was recommended by [Syntetos 2006, Boylan 2007, Eaves 
2004] to be very competitive because it removes the bias associated to Croston’s technique. In addition to these 
approaches, Willemain [24] developed a non-parametric bootstrapping approach forecasting especially intermittent 
demand. Meanwhile, Snyder [16] proposed a parametric bootstrapping to forecasting slow demand. Interested 
readers are referred to [22] for more information on parametric and non-parametric bootstrapping approaches to 
forecasting intermittent demand. The performance of forecasting techniques can be measured by the forecast error’s 
mean absolute deviation (MAD), mean square error (MSE) and mean absolute percentage error (MAPE). Though 
MAD, MSE and MAPE are sufficient to compare between errors associated with each of the demand scenarios, 
when it comes to identifying the best forecasting technique the winners may be different across each of these error 
metrics. For illustrating the applicability of this meta-forecaster approach we will select the best technique based on 
MAD. We plan to extend the training of the meta-forecaster based on other forecast metrics in future research. The 
following section discusses the methodology that we adopted in building the meta-forecaster. We describe how the 
demand attribute vector space is created and mapped to its best forecast technique. Section 2.1 shows how 
multinomial logistic regression is applied on the data and in section 2.2 we discuss how the meta-forecaster is tested 
and we summarize the results. 
 
2. Experiment and Results 
The classification scheme requires constructing a demand attribute space and mapping to its best forecasting 
technique. This is followed by training this data and thus developing a classification scheme. The demand attribute 
space is of 6-dimension �� = � ��	,  �		, , ��, �	, �	,����. The 6-dimensional demand attribute space is based on real 
data provided by the US Navy. This data set consists of 3725 demand series for items which are intermittent in 
nature. The best forecasting technique corresponding to each of the 3725 demand attribute vectors were selected 
through a simulation approach. We simulate the demand at each of the vectors. The demand generation is based on 
the demand attributes  ��� = � ��	,  �		, �� , ���� , �	,��� estimated for each of the 3725 items. The demand attributes 
are probability of non-zero demand after zero demand, probability of non-zero demand after non-zero demand, mean 
non-zero demand, non-zero demand variance, and lag 1 correlation coefficient of non-zero demand respectively. 
During the simulation run, forecasts are made based on relevant forecast techniques. At the end of the run, the MAD 
associated with each forecast techniques is observed. The demand generation and corresponding forecasts are 
replicated for each of the demand attribute vectors.  After the replication, for each demand attribute vector the best 
forecasting technique is selected. The comparison across the forecasting techniques is based on a multiple 
comparison approach called multiple comparison with the best (MCB) developed by Hsu [8]. At each of these 
vectors, the forecast techniques with low MAD were identified and ranked. Hsu’s approach compares each 
forecasting technique with the best of the remaining forecasting techniques [8] [11]. When compared with other 
multiple comparison techniques, in Hsu’s MCB approach, the comparison procedure is implemented in a single-
stage. In addition, the relative performance of each forecasting technique can be estimated. Thus we obtain the 
demand attribute space with each of the vectors mapped to its best forecasting technique. The training set within the 
3725 mappings are trained and following that the test data set is tested to estimate the accuracy of the classifier. This 
approach is illustrated as in Figure 1.  
 
The experimental set up is implemented in a Java platform and is integrated with a Java simulation library (JSL). 
The JSL is an open source simulation library for Java. The JSL has packages that support random number 
generation, statistical collection, basic reporting, and discrete-event simulation modeling. The interested reader may 
also refer to Rossetti [12] for further information on the design and use of the JSL. For our experiment we decided to 
replicate 100 times. The demand is generated by the artificial demand generator discussed in Varghese [20]. This is 
a demand generator that models a demand occurrence process and demand amount process. The demand occurrence 
process is a 2 stage Markov Chain and the demand amount process is based on an algorithm named ARTA (Auto 
regressive to anything). The ARTA algorithm induces correlation within the demand amount process [5]. The user 
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controls the intermittence, lumpiness and dependence by assigning the demand generator with the input vector, 
��� = � ��	,  �		, ��, ���� , �	,���, .. The input demand attribute vector corresponds to the 6-dimensional demand 
attribute vector with which the demand attribute space is then created from the generated demand series. The 
forecasting methods that we selected are Simple Exponential Smoothing (SES), Moving Average (MA), Syntetos’ 
Approximation method and Cumulative Average (CA). The levels are: Simple Exponential Smoothing with alpha 
value 0.1 and 0.2: SES(0.1) and SES(0.2), Moving Average with N value 19 and 9: MA(19) and MA(9), Syntetos’ 
method with alpha value 0.1and 0.2: Syntetos(0.1) and Syntetos(0.2)  and Cumulative average. The best technique is 
selected from these techniques. Since, Syntetos is an improvement of Croston, we decided to select Syntetos over 
Croston. The range of values of alpha are recommended by previous research [6] [9]. 

 

 

Figure 1 Methodology 

 
2.1 Multinomial logistic regression 
One of the widely used classification schemes to train data, Multinomial logistic regression or Polytomous logistic 
regression or Multinomial logit model is considered in our approach. It is very similar to logistic regression 
modeling. In logistic regression modeling, the categorical response variable has only two levels and the probability 
of falling into each category is modeled as a binomial distribution. Meanwhile in multinomial regression, the 
response variable is categorical and nominal and has more than two levels and the classification is based on 
multinomial distribution. In multinomial logistic regression [1] [15], we develop a model relating the predictors to 
the probability of falling in each of the levels,  �� = 1, ⋯ � of the response variables. In our case the predictors of 
the classification scheme are the demand attributes: ��	, �		,  ,�� ,�	and �	,���; and the response variable is the 
best forecasting technique. The �� is assumed to be multinomial and there is no inherent ordering within the m 
response levels. Let� ��	,  �		, , ��, �	, �	,���� = � �	,  ��,  ��,  � ,  �!,  �"#. The logit odds or probability of falling 
in a category relative to the baseline category (base) is given by: 
 

        $%& ' �(
��)*+

, = -�( + -	(  �	 + ⋯ + -	(  �"
             / = 1, 2, … 7

      / ≠ 4567          �1# 

 
SES (0.1) is selected arbitrarily as the base line category arbitrarily. From this we can 

compute �� = +89�:;<=:>< 8>=⋯=:>< 8?�
∑ +89�:;A=:>A 8>=⋯=:>A 8?#BAC>

, where -estimate of the baseline category is equal to zero. The -estimate 

can be obtained by the maximum likelihood estimation (MLE); the log-likelihood is given by,  
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"
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The second summation is over all observations i with response level j, and �(��#is the probability, substituting in the 
predictor value the ith observation. The demand attribute vector space mapped to the best forecasting technique will 
be created after the simulation run. The coefficients, -  estimate from Equation 2 can be computed using the 
CATMOD procedure in SAS software [2] [17]. Thus the probability �(can be estimated for an unknown demand 
attribute vector. The forecasting technique with highest probability will be selected. The use of multinomial 
regression to train the demand attribute vector data and classify into the appropriate forecasting technique and 
subsequently using the classification rule to predict the best forecasting technique; is the first of its kind.  
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2.2 Training 
The first question that has to be addressed is how to train and test the data. One of the naïve approaches is to train 
and test by re-substitution in which we train and test the same data. However, the accuracy rate in re-substitution 
may be over estimated. The other approach is the cross validation approach and it is of 3 types: hold-out cross 
validation, n-fold cross validation and “leave one out” cross validation. Each case has its advantages and 
disadvantages. Hold-out cross validation trains on fewer observations when compared to others. However, hold-out 
cross validation is considered computationally less intensive. Hence, in this study, we opt for hold-out cross 
validation. Now the next question is how much of the data has to be trained or how much is to be held out. Lacking 
specific guidance from the literature, we arbitrarily decided to use 70% of data for training and to test on the 30% of 
the remaining data. The data for training and testing is randomly chosen, in such a way that the percentage of each 
of the 7 categories in the training data and the testing data will be the same as that in the whole data. Thus, we 
classify the test data and training data. The multinomial regression was analyzed by the SAS procedure named 
CATMOD, which models the data based on multinomial logistic regression where -estimate is based on MLE. 
Table 1 summarizes the -estimate each category with respect to the arbitrarily selected baseline category SES (0.1) 
and the corresponding 6 predictors. 

Table 1 I estimate each category 

 SES(0.1) MA(19) Syntetos (0.1) MA(9) Syntetos (0.2) CA 

intercept -4.81 -3.41 -13.31 * -5.51 -6.53 

 �		 -12.34 * -14.09 21.97 -55.20 -9.94 

 ��	 34.09 65.60 77.86 102.90 87.76 56.13 

�	 -60.27 -56.25 -64.76 -23.31 -30.33 -77.14 

 9.49 -15.32 * -85.42 9.49 5.58 

�� -0.99 1.27 * 6.92 -0.79 -0.48 

�	,��� -45.97 -29.05 -33.7102 * -24.82 -62.39 

  
The SAS output showed that the MLE estimation is a good fit. It also shows the statistical significance of each 
predictor on the response. Those predictors that are not statistically relevant are excluded from the regression 
equation, (* value of -estimate in Table 1 denotes that the predictor is not statistically significant). For example the 
-estimate of the predictor “mean” has no statistically significant relevance with the response Syntetos (0.1). Once 
the significant coefficients are estimated, we compute the probability that an observation from the test data will fall 
into each category. Our classification rule then chooses the category with the maximum probability as the most 
appropriate predicted best-forecast-technique to this observation. We compare the recommended technique with the 
actual best technique which the test data has already observed from the simulation. The accuracy for how many 
times the best forecasting technique is predicted as the recommended best was estimated as 70.87%. The accuracy of 
how many times the best forecasting technique is predicted as the one of the two recommended best was also 
estimated and is 87.94%. This is a reasonable estimate for the accuracy. We see the usability of the meta-forecasting 
approach. This approach is relevant in large scale inventory system where selecting the best technique is not a trivial 
problem. The meta-forecaster eases this problem. 
 
3. Conclusions and Future Research 
With a classification rule, we can predict the most appropriate forecasting technique for a new data set. We 
estimated an accuracy rate of 70.87% for the best forecasting technique to be predicted as the best and 87.94% for 
the best forecasting technique to be predicted as one in the two best. This is a reasonable level of accuracy. This is 
an initial work towards the concept of meta-forecasting; the accuracy of the meta-forecaster based on the 6 demand 
attributes justifies extending the research to considering means to improve the meta-forecasting approach. In future 
research, an organization’s existing forecasting technique will be compared to the technique selected via the meta-
forecaster. This will give us a better metric to the benefit of using the classification rule. We can extend the demand 
attribute space by considering other attributes like the mean and the variance of interval between non-zero demand 
and thus possibly improve the accuracy of the classifier. In addition to that, we may consider generating demand 
attribute space using multi-variate random number generation with correlation induced by approaches like NORTA 
[5]. In this paper, the demand attribute space is based on the existing 3725 demand attribute vectors; NORTA and 
similar approaches generates demand attribute vectors according to distribution of each demand attributes without 
losing the correlation information. A larger population of demand attribute vectors gives a better defined attribute 
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space. In future research, we may also consider mapping the demand vector with the most appropriate inventory 
practice (e.g. base-stock policy, (s, S) policy, (r, Q) policy etc.). 
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