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Abstract

Safety stock levels can be calibrated via simulation procedures to increase the likelihood that the planned for 
performance will actually be met in practice. Gudum and de Kok [1] proposed a simulation based safety stock 
adjustment procedure that is motivated by the problem of comparing lot-sizing rules. We refine the procedure by 
presenting a better algorithmic representation so that practitioners can more readily understand and implement the 
procedure. We extend the study by considering the problem of comparing other lot-sizing rules; namely, lot-for-lot, 
part-period balancing and least unit cost. Experiments illustrate how the safety stock adjustment procedure performs 
under a number of demand scenarios.
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1. Introduction
Safety stock in an inventory system plays a key role in attaining target service levels in inventory systems. A 
number of safety stock setting methods are available. The traditional method is based on models found in classical 
inventory theory [2]. In general, these models assume that the demand follows a particular pattern or is known in 
advance; however, demand uncertainty is the core issue that degrades the quality of decision making process by 
yielding unattained service level in such inventory systems. In order to achieve the targeted service level, an 
alternative approach is to model demand uncertainty using simulation procedures. From the standpoint of 
determining safety stocks to achieve a particular service level via simulation, the following key papers appear in the 
inventory literature: Callarman and Mabert [3] investigate the potential use of so-called “Service Level Decision 
Rule (SLDR)” which is developed through a linear regression analysis in order to estimate the service level. The rule 
is developed using a response surface mapping procedure that captures the changes in the service level against the 
change in safety stock buffer levels. By changing the safety stock levels systematically, the rule is built with the 
simulation of experimental factors of coefficient of variation of demand, forecast error (expressed as a percentage of 
average demand), the amount of safety stock (expressed as a percentage of average demand) and the time between 
orders. A search routine was applied with SLDR in order to achieve the desired service level. SLDR is also used in 
[3] to determine the required safety stocks achieving 95% and 98% service levels. Wemmerlöv and Whybark [4]
study the problem of comparing single-stage lot-sizing rules by determining net requirements based on allowing 
backorders. Fourteen different lot sizing rules were compared to each other based on the cost of keeping a certain 
level of safety stock to achieve nearly a 100% service level for fill rate. The safety stocks are determined by 
repeating the simulations until the target service levels are reached. Later, Wemmerlöv [5] studied a similar problem 
by determining net requirements based on lost sales.

The methodology labeled, “Safety Stock Adjustment Procedure” (SSAP), in [1] is also motivated by the problem of 
comparing different lot-sizing rules. When comparing lot-sizing rules via total cost, it is important that the rules be 
compared under exactly the same service levels.  Thus, decision makers can directly determine the better rule 
without resorting to more complicated analysis via a trade-off curve approach. By assuming a particular time phased 
order point policy (TPOP) [6], the authors are able to show that a simulation based procedure that estimates the 
empirical probability distribution of the net stock at the end of a period can be exploited to develop update formulas 
for the safety stock. That is, the procedure keeps track of the behavior of the net stock levels observed through the 
simulation run and builds an empirical probability distribution to determine the amount of safety stock to be adjusted 
so that the target service level is exactly achieved. The updated safety stock values can then be tested to see if they 
meet the target level via another simulation.
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The procedure in [1] constitutes a beginning for other related studies and practical applications. The objective of 
attaining the target service level may be pursued by developing a method through simulation approaches to 
determine the inventory policy parameters (e.g. safety stock) for various inventory systems. For example, Boulaksil 
et al. [7] adopts the procedure to determine the empirical probability distribution of the backorder quantities instead 
of the net stock levels. In their approach, net stock levels in a multi-stage inventory system are determined based on 
backorder quantities by solving the mathematical model repetitively in a rolling horizon.

In this paper, we refine the procedure given in [1] from the viewpoint of a practitioner so that it can be readily 
understood and implemented. In order for the procedure to be applied, the net requirements must be calculated 
through TPOP with a backordering assumption in the inventory system. In this respect, the next section will describe 
the netting procedure.

2. The Netting Procedure
The netting procedure determines the net requirements to be input for a lot-sizing rule that yields the decisions of 
when to order and how much to order. In this section, we refine the netting procedure proposed in [1] through a 
better algorithmic representation. We use the same notation given in [1]. The following notation is used in the 
netting procedure and the safety stock adjustment procedure. 

Notation:
Ψ: safety stock used in simulation runs, Ψ : initial safety stock, Ψ∗: safety stock that satisfies the target service level

: initial net stock, : lead time (fixed), : forecast horizon, : run length, : warm-up period length
: period number ( = 1,2,3, … , ), : actual demand in period 

, : planned net stock at the end of period + determined at period where = 1,2,3, … , − 1
: actual observed net stock at the end of period 

, : forecast made at the beginning of period t for period + where = 1, 2, 3, … , −  1
, : replenishment order placed at the beginning of period arriving in the beginning of period  +  
, : net requirement determined at the beginning of period for the end of period + where  0, 1, 2, … , −   1
: minimum recorded actual net stock during simulation
: maximum recorded actual net stock during simulation

: number of chosen probabilities, 3: performance measure of ready-rate, : target service level of 3
: the number of periods with negative actual net stock

Since it is not specified in [1], the planned net stocks are calculated over the forecast horizon for = 0,1,2, … , − 1
by using the following expression.

,  =    − ∑ ,  + ∑  , (1)
The actual net stocks are calculated for each period as follows. =    −  +  , (2)

We consider the algorithm given in Exhibit 1, to determine the net requirements over the forecast horizon of, + 1, … , + − 1.

Exhibit-1: The Algorithm for net requirements over forecast horizon

for = 0 to  − 1
if < then

, = 0
else if ≥ and , ≤ then

, = − ∑ ,− ∑ − ∑ , − ( − ), 0
else

, = ,
end-if

end for
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3. Safety Stock Adjustment Procedure
In this section, SSAP is given in 3 phases. The first phase determines the minimum and maximum values of the 
actual net stock by running a simulation up to a warm up period. The second phase continues the simulation after the 
warm-up period and determines the frequency function of the actual net stock. After this step, one may stop the 
procedure if the achieved service level is close enough to the target service level. If the desired service level is not 
attained, then the procedure continues with the third phase which builds the empirical probability distribution 
function based on the frequency function gained from the second phase. Next, the safety stock adjustment amount is 
calculated based on the empirical probability distribution. Then the simulation is repeated with the adjusted safety 
stock to see if the desired service level is actually achieved.

Phase-I: This phase determines the maximum and minimum values of the actual net stock observed during the 
warm-up period of the simulation. Exhibit-2 depicts the phase with an algorithm. For the fixed planning horizon (i.e. 
simulation run length), net requirements and associated ordering decisions are updated at each period over the 
forecast horizon. Therefore, the ordering decisions are subjected to change as the simulation progresses.

Exhibit-2: The algorithm for phase-I

Phase-II: In this phase, the frequency function of the net stock is determined over the simulation run by excluding 
the length of warm-up period ( ). Notice that no initialization occurs in this phase. The minimum and the 
maximum recorded actual net stock values during Phase-I are included in the frequency function in this phase. The
initial values of the simulation parameters of forecasting, net requirements, outstanding orders and the actual net 
stock values are determined at the end of the warm-up period in Phase-I. After the second phase, the achieved 
service level is calculated. In this paper, we consider service level measure of ready-rate ( 3) which is defined as the 

percentage of time during which the system has positive net stock and calculated as 3 = 1 − . This phase is 

given in Exhibit-3 with an algorithm.
Exhibit-3: The algorithm for phase-II

Phase-III: This phase determines the empirical probability distribution function to determine the adjusted safety 
stock (Ψ∗) that satisfies a particular target service level ( ). The empirical probability distribution is built based upon 
the observed actual net stock values from Phase-II. Each observed actual net stock value is sorted in an ascending 
order so that these values are stacked between the minimum and maximum observed values of actual net stock (i.e. 

and ). The cumulative distribution function ( (. )) is built based on the frequencies for each observed values. 

As given in [1], is determined by = + ( − ) for = 1, … , − 1. Then = ( ) for =0,1, … , . Let Υ be the safety stock adjustment amount. As specified in [1], the value of Υ is calculated as follows:
the particular index ( ) is determined so that ≤ 1 − ≤ with the corresponding and values 
satisfying ≤ Υ ≤ . After determining the corresponding values of and , Υ is calculated by the 
following linear interpolation given by [1]:

for t = +1 to 
1. Determine , , , , , , , and by steps 1-5 given in Exhibit-2
2. Construct the frequency function with respect to each observed actual net stock values during the 

simulation
end-for

Initialize the parameters of , , , , 
Select an arbitrary value for Ψ so that Ψ = Ψ and Ψ =
for t = 0 to

1. Determine forecast demand over the forecast horizon
2. Determine the planned net stock using expression (1) over the forecast horizon
3. Determine net requirements over the forecast horizon by using the algorithm given in Exhibit 1
4. Apply a lot-sizing procedure to determine the size and the release-period of the order based on the 

determined net requirements over the forecast horizon
5. Determine and record the actual net stock by expression (2)

end-for
Determine the minimum and maximum recorded actual net stocks
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 Υ = ( ) ( )
(3)

and thus, Ψ∗ = Ψ − Υ (4)

The algorithm given in Exhibit 4 summarizes the steps taken in Phase-III to determine the safety stock adjustment
amount.

Exhibit-4: The algorithm to calculate adjusted safety stock amount

In order to check if the adjusted safety stock satisfies the desired service level, another simulation run is carried out 
based on the algorithm given in Phase-II with the updated values of Ψ = Ψ∗ and X = Ψ∗. If the desired service 
level is not satisfied with the adjusted safety stock level, then the procedure is repeated with a longer warm-up and
simulation lengths. Notice that the empirical probability distribution is simply used to build the quantile function 
that maps the values of 1 − to the corresponding values of . A typical statistical package (e.g. JMP 8) is able to 
determine the desired quantiles based on the data of the observed actual net stock values. Therefore, Phase-III can 
simply be carried out by employing a statistical package after passing the data of the observed actual net stock 
values from Phase-II. 

4. Experimental Study
In this section, we present the results of experiments to show how well the SSAP performs under a number of 
demand scenarios. Experiments are based on the simulation study that determines the sample path of the actual net 
stock values over a fixed planning horizon. The updated safety stock is determined based on the empirical 
probability distribution of the generated sample path via simulation runs. The simulation runs are executed on a 
spreadsheet with the length of 1,000 time periods and the warm-up period of 100 time periods. All the performance 
measures and cost calculations are carried out by disregarding the time horizon of the warm-up period. The 
maximum and the minimum values of the observed actual net stock values are recorded during the warm-up period 
and included into the set of observed actual net stock values over the time periods after the warm-up period. The 
ready-rate ( 3) is monitored during the simulation runs. In order to construct the empirical probability distribution, 
the number of chosen probabilities (K) is set equal to 300 as recommended by [1]. Demand scenarios are empirically 
generated as follows. Demand is assumed to be received monthly periods with seasonal variations. The planning 
horizon (one cycle) is assumed to be 1 year with 4 seasons each of which consists of 3 months. Also, the demand is 
affected by the seasonal fluctuations without exhibiting any particular trend. The demand is assumed to follow the 
normal distribution with different means selected from the set of {100, 50, 100, 150} for each season, respectively.
Any generated negative demands are set equal to zero. The forecasting method is selected as the Winters 
exponential smoothing procedure [2]. The smoothing constants are selected as 0.2 for the level and 0.3 for the 
season. The simulation runs are carried out for each experimental factor shown in Table 1. These factors are 
generated by the low and high levels for the combinations of the lead-time ( ), the standard deviation of the demand 
per period ( ), ordering cost ( ) and holding cost per period (ℎ).

=
for = 0 to = + ( − )
               == ( )
               if  ≤ 1 − ≤ then
                         = and =
                         break

end if
               =
end for 
use expressions (3) and (4) to calculate Ψ∗
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Table-1: Experimental factors for the simulation model
Level ℎ
Low 0 10 100 1

High 4 25 500 1

The input data and the experimental factors considered in this paper are chosen to be identical as in [1] so that the 
results can directly be compared each other. Two types of analysis are of interest in our study: 1) Comparing the 
error results gained through "traditional" approach and the SSAP and 2) Comparing the total relevant costs of a 
number of lot-sizing rules. The objective through the experiments is to show how well the SSAP performs in 
determining safety stock levels to attain the desired performance measure. In this respect, errors are tabulated in 
Table-2 to measure the deviation from the desired performance measure for ready-rate. Let be the value of the 
actually achieved ready-rate value for demand scenario j. Therefore, the foregoing error measure can be expressed 
as = − . The target ready-rate value ( ) is assumed to be 90% throughout our experiments. Both the 
traditional approach and the SSAP are repeated for each level combination under the lot-sizing rules of lot-for-lot 
(LFL), least unit cost (LUC) and part-period balancing (PPB). Table-2 shows the foregoing error results for each lot-
sizing rule and experimental factor under the traditional approach and the SSAP. In terms of the traditional 
approach, the achieved ready-rate for each experimental factor is obtained as follows:

Exhibit-5: Methodology to “traditionally” determine 3

For the SSAP, the achieved ready-rate value is determined after running the simulation with the adjusted safety 
stock level. The initial safety stock value (Ψ ) in the SSAP is always set equal to 0 in our experiments. The results in 
Table-2 point out that error values with the SSAP are very low as compared to the traditional approach. Except for 
one case, most absolute error results are lower than 1% meaning that the target ready-rate of 90% is met under the 
safety stock level determined by the SSAP. The size of errors with the SSAP can even be decreased if the simulation 
length is increased to construct a more confident empirical probability distribution.

Table-2: Error results with respect to the traditional approach and the SSAP

Experimental Factors Error under the traditional approach Error under the SSAP

A/h L LFL LUC PPB LFL LUC PPB

100 0 10 54.33% 1.22% -5.33% -0.89% -0.56% -1.11%
100 0 25 54.44% 1.78% -4.33% -0.33% -0.11% -0.78%
100 4 10 73.67% 14.33% 6.56% -0.56% -0.44% -0.56%

100 4 25 51.33% 3.89% -1.78% -0.22% -0.67% -0.33%

500 0 10 54.33% -7.67% -7.44% -0.89% -0.11% -0.22%
500 0 25 54.44% -7.44% -7.78% -0.33% -0.22% -0.44%
500 4 10 74.66% 5.22% 0.11% -0.56% -0.33% -0.33%

500 4 25 78.66% -1.44% -2.78% -0.22% -0.11% -0.11%

The problem of comparing lot-sizing rules is more appealing with the SSAP, since the comparison is possible 
predicated on the same service level. Therefore, as a second part of the analysis, we tackle the problem of comparing 
lot-sizing rules with 90% of ready-rate. Since the experimental environment is identical in [1], along with the lot-
sizing rules considered in this paper, we also compare the lot sizing rules of Wagner-Whitin (WW), Silver-Meal 
(SM) and economic order quantity (EOQ) as presented in [1]. The comparisons are performed by the total relevant 
costs obtained by the sum of ordering and holding costs per period. The cost results associated with each lot-sizing 
rule are given in Table 3. The results reveal out that the total relevant costs tend to increase in the size of the lead 
time and the variability of the demand. In most cases the total relevant costs under EOQ, SM and WW are lower 
than those obtained via the lot-sizing rules considered in this paper. For the cases where the ordering costs are low, 
the lowest total relevant costs are achieved by LUC. On the other hand, PPB is able to generate the lowest total 

1) Determine order size (Q) with economic order quantity formulae 

2) Estimate the safety factor (k) by the formulae:  ( ) − 1 − Φ( ) = ( )
√

3) Determine the safety stock level by the formulae: Ψ# = √
4) For each lot-sizing rule, run the simulation with Ψ = Ψ# and = Ψ# to estimate 3
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relevant costs in the case of higher ordering costs. Also, for large lead time, LUC and PPB tend to yield lower costs 
than the other lot sizing rules.

Table-3: Cost comparisons of lot-sizing rules with 90% of 3
Experimental Factors Gudum and de Kok [1] Ünlü and Rossetti

A/h L EOQ SM WW LFL LUC PPB

100 0 10 123 120 117 145 134 140

100 0 25 136 135 136 150 140 137

100 4 10 141 139 144 154 140 145

100 4 25 200 197 206 157 142 148

500 0 10 299 285 288 417 307 305

500 0 25 297 296 296 415 295 293

500 4 10 320 298 292 425 308 305

500 4 25 366 356 351 419 297 294

5. Conclusion and Future Research
In this paper, we have refined the SSAP by presenting a better algorithmic representation so that practitioners can 
more readily understand and implement the procedure. In addition, we have extended the study by considering the 
problem of comparing lot-sizing rules; namely, lot-for-lot, part-period balancing and least unit cost. A series of 
experiments were carried out to illustrate how the safety stock adjustment procedure performs under a number of 
demand scenarios. The initial results presented in this paper indicate the potential of using the SSAP for determining 
safety stock levels to attain the desired performance measure. In addition, the procedure can be useful for 
determining which lot-sizing rule(s) are best for which conditions. The preliminary results were compiled based on 
single simulation run experiments. Further experiments are of interest to fully justify these preliminary results, 
which can be done by performing multiple simulation runs for ensuring a certain confidence interval. An 
investigation of a similar procedure that can be applicable to the classical inventory control models under complex 
demand structures (e.g. intermittent and highly variable demand) should be considered for future research.
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