
Proceedings of the 2008 Industrial Engineering Research Conference
J. Fowler and S. Mason, eds.

`

An Object-Oriented Framework for
Analyzing VARIMETRIC Systems

Mehmet Miman, Manuel D. Rossetti, Vijith Varghese, Edward A. Pohl
Department of Industrial Engineering,

4207 Bell Engineering Center,
University of Arkansas, Fayetteville, Arkansas 72701, USA

Abstract

The VARIMETRIC model, discussed in Sherbrooke [8] and also in Muckstadt [4], has been used to analyze multi-
echelon spare part networks for the military and other organizations for close to 40 years. This paper puts a “new
face on an old friend” by providing an open-source, object-oriented framework for the performance analysis and
optimization of VARIMETRIC like inventory systems. The object-oriented design, combined with the power of
Java, provides users enormous flexibility to improve the current algorithms with minimal additional effort as well as
implement their own optimization procedures. Currently, two Lagrangian based algorithms and a marginal analysis
algorithm have been implemented. The capabilities of the framework as well as its design are presented in this
paper. In addition, simplified examples illustrate how to use the framework for performance analysis as well as
optimization. Since the software is open-source and object-oriented, it can readily be extended for advanced
modeling situations.

Keywords
Varimetric, optimization, object oriented

1. Introduction
Repairable spare parts - those parts that can be economically repaired after a breakdown or a failure and used again -
constitute an important portion of all assets of a typical organization (armed forces, manufacturing companies, civil
airlines etc.) with remarkable amounts of monetary value. Since the late 1960s, the management of repairable items
has received an extensive amount of attention in the literature. Interested readers can refer to [1] and [2] for a review
of this area. This research builds on this literature by examining the optimal stock allocations among bases and
depots subject to budgetary limits through an object-oriented VARIMETRIC package. The VARIMETRIC model,
first introduced by Graves [3], assumes a compound Poisson failure process at the lower echelon with a continuous
review one-for-one (s-1,s) policy, and suggests a two-parameter negative binomial distribution to fit the distribution
of backorders at the bases in a two-echelon inventory system for a repairable item. The optimal allocation of stock
within this context is a non-separable, non-convex, nonlinear discrete knapsack problem. The described open-
source software implements three algorithms described in Muckstadt [4] to provide reasonable solutions within an
object oriented design in Java. This package provides optimization of stock allocation of spare parts according to the
VARIMETRIC model. This provides a readily available method to embed optimization within a larger simulation
based optimization framework for evaluating forecasts and the analysis of other supply chain issues [5][6].

2. Background
This section provides enough details so that the paper becomes self-contained and one can better conceptualize the
developed software. We begin with the basic notation, which also describes the primary inputs to the software.

ijλ : demand rate for LRU i at base j (i=1..n, j=1..m)

ijr : repair probability of item i at base j (i=1..n, j=1..m)

i0λ : demand rate for LRU i at the depot; (1)ij ijj
r λ

ijB :base repair cycle time for LRU i at base j .

917

Miman, Rossetti, Varghese, and Pohl

iD : depot repair cycle time for LRU i .

ijs :LRU i stock level at base j (or depot if j=0)

Aij : average order and shipping time for item i, from depot to base j.
()D i0B s : expected outstanding depot backorders for LRU i given si0.

ijT : effective lead time; average LRU i re-supply time at base j; ()(() /)ij ij ij D i0 i0r Bij 1 r A B s λ

ijμ : base pipeline mean; ij ijλ T

2
ijσ : base pipeline variance; 2

0 0 0(1) / () ()ij ij ij i D i D iμ r λ λ Var N s B s

pij : probability of success for the fitted distribution for the pipeline of item i at base j; ij ijμ / σ

rij : number of success for the fitted distribution for the pipeline of item i at base j; / (1)ij ij ijμ p p

ij(si0, sij): The expected back orders for item i at Base j when the depot stock is si0 and the stock at base j is sij.
θ : Langrangian multiplier for the relaxed problem.

minθ : minimum value considered for θ .

maxθ : maximum value considered for θ .

(,)i i i0α s s : total bases’ expected back orders of LRU i, where depot stock level is si0 and total stock in the system is

si and remaining (si-si0) units are allocated according to greatest marginal benefit among bases.
ˆ ()i iα s : total bases’ expected back orders of LRU i, where the total of si units are allocated among bases and the

depot optimally resulted from the enumeration over the depot stock level; min (,)
i 0

i i0
s
α s s

ˆ ()c
i iα s : piecewise linear convex minorant function of ˆ ()i iα s

S i : set of total stocks levels of s to be considered for LRU i.
ˆ i

cS : convex set of total stock levels corresponding to ˆ ()c
i iα s

k
is : kth convex point in ˆ i

cS

ci : unit cost of item i.
b : available budget
ε : allowable budget tolerance

Based on the above notation, the problem of interest can be described by a mathematical problem (P) as illustrated
in Exhibit 1.

:

(,)

. .

()

, integer ,

n m

ij ij i0
i 1 j 1

n m

i i0 ij
i 1 j 1

ij i j

P

Min β s s

s t

c s s b

s 0

Exhibit 1: Mathematical Problem for Stock Allocation

Exhibits 2-4 summarize the steps of three algorithms- Lagrangian Iterative (LI), Lagrangian Enumerative(LE) and
Marginal Analysis (MA) implemented within the software. The interested reader should refer to Muckstadt [4] for
further details. Some implementation issues and some open questions in these algorithms raised by Muckstadt [4] as
well as our approach to these issues are mentioned in the following section.

918

Miman, Rossetti, Varghese, and Pohl

min max min maxStep 1. Determine and , set iteration number 1 and = (+)/2

Step 2. Set and for each item , find depot and base stock levels, (), by solving relaxed sub-problem

i.e, deter

l

l ij

θ θ l θ θ θ

θ θ i s θ

0,1...

ma

mine min min (,)

Step 3.
Evaluate the main constraint in , . ., compute () ()

if () , stop; otherwise, if () set

ij

m
i i

ρ ρl ρl ij ij l i ij l i
s

j 1

n m

i ij
i 1 j 0

W where W β s ρ θ c s θ c ρ

P i e C θ c s θ

C θ b ε C θ b θ

x min

min max

;else set

and set 1, = (+)/2 and return Step 2.
l l

l

θ θ θ

l l θ θ θ

Exhibit 2: Lagrangian Iterative Algorithm

min max

min max

Step 1. Determine and , and lagrangian multiplier values such that

... ...

Step 2. For each item , for each , find depot and base stock levels, (), by solving rela
1 2 l N

l ij l

θ θ N

θ θ θ θ θ θ

i θ s θ

xed sub-problem

i.e, determine min

Step 3. Compute () and select the solution that has cost closest to the .

i
ρ ρl

l

W

C θ b

Exhibit 3: Lagrangian Enumerative Algorithm

 1

ˆStep 1. ˆ ˆ ˆSet 1, and for all , determine (,), (), (), thus, and compute () ()

Step 2. ˆ ˆFor all , compute the mariginal benefits as () () () / (i i i

c i c 1
i i i0 i i i i c i i ii

k k kc c
i i i i i i i

l i α s s α s α s S C l c α s

i s α s α s c

 * * *

*

* *

1

1*

*

)

Step 3. Select with greatest marginal benefits, i.e. () max () and set () () ()

Increment 1 and 1, update only the marginal benefits of

i i

i i i i

k k
i i

k k kk
i i i i i ii i

i i

s s

i s s C l 1 C l c s s

k k l l i

 *

*by recomputing ()

Step 4. if C() , return Step 3.; otherwise stop

i
k

ii
s

l b ε

Exhibit 4: Marginal Analysis Algorithm

3. Object-oriented Design and Implementation
The object oriented modeling for implementation of the algorithms is motivated by the fact that for a given
langrangian multiplier and depot stock level, the relaxed sub problems are separable by item and bases as well as by
the fact that marginal analysis is performed over each item as summarized in Exhibit 4. To reflect these
computational issues in the algorithms as well as to capture the VARIMETRIC model performances readily, such as
expected backorders and stock out probabilities at each stock keeping location, we first developed a class
VariMetricModel reflecting the VARIMETRIC system which consists of stocking units allocated to the depot and
bases. Note that an item that is stocked at the depot does not necessarily need to be stored at each base. Instances of
items at the two levels are represented by the instance of the classes VMitem and VMBaseItem classes respectively.

As illustrated in Figure 1, an instance of VarieMetricModel, that defines the two-echelon multi item spare parts
system based on the parameters defined in the notation list, is the main input for all algorithms. It holds for instances
of VMItem, each of which is a depot stock keeping unit that can also be stored at the bases. VMItem and
VMBaseItem are subclass of BaseStockItemAbstract which implements BaseStockItemIfc. The interaction between
objects between VMItem and VMBaseItem is illustrated in the class diagram shown in Figure 1. In brief,
BaseStockItemIfc, promises to implement some performance functions related to bases such as expected backorders,
probability of stock out, expected backorder waiting time and so on. BaseStockItemAbstract is a concrete
implementation of this interface which has some of the important fields, mentioned in the notation list, for a stock
keeping unit such as stocking level, lead time distribution, demand rate etc. It provides behaviors to access and
modify the fields and implements the methods promised by the VMBaseItemIfc. Due to space limitations, we do not
present a detailed discussion of all the attributes, methods, and behavior of these classes.

919

Miman, Rossetti, Varghese, and Pohl

Figure 1: The Class Diagram of Varimetric Package

VMBaseItem provides lower echelon performance which can be aggregated through VMItem as explained next. It
also provides the solution to the relaxed Lagrangian sub-problems by base given a depot stock level. As mentioned
before VMItem refers to the overall LRU in the depot and has attributes and methods specific to the depot level. It
contains instances of the associated VMBaseItems stored at bases (as illustrated in Exhibit 6) and provides the
behaviors promised by VMItemIfc to compute the aggregated LRU-level performance such as total expected base
backorders, total depot backorders, total base cost, total depot cost and total stocking cost while VariMetricModel
further aggregates individual LRU results into over-all system level performance measures. That is, first the
performance of individual LRUs at each base is computed, which is later aggregated through all bases to obtain the
performance measures for each LRU, which are aggregated through all items to obtain the system level
performance measures through VMBaseItem, VMItem and VariMetricModel respectively.

The basic advantage of VariMetricModel is to provide extensive statistics about the systems’ performance. In
addition, the main computations are repeated when the depot stock level is changed, i.e. the key driver for
computations is the depot stock level for each item set by VMItem. This enables through the object-oriented
structure other meta-heuristics, such as tabu search or genetic algorithms to be implemented easily depending on the
user preference as post locally refining algorithms, which may improve solutions obtained from specialized
algorithms mention in the following paragraphs.

Above algorithms, illustrated in Exhibits 2-4, are implemented, and hence can be executed, under object-oriented
design using the same VariMetricModel that computes the characteristics of the two-echelon spare parts inventory
systems. Both VMLangrangianIterativeAlgorithm and VMLangrangianEnumerativeAlgorithm are subclasses of the
abstract VMLangrangianAlgorithm class, which provides fields and methods for both Lanrangian algorithms such as
optimize(), searchThetaInterval(), evaluateConstraint() and optimizeLagrangeItemSubProblem(). In this design, for
the item-level sub-problem, i.e. Step 2, in Exhibit 2 and 3, we set the depot stock level iteration limits to be within
two standard deviation of the mean demand faced by the depot:

0 0 0 0max{0, 2 }, min{ , 2 }i i i i i i i i
i

b
ρ λ D λ D λ D λ D

c

 (1)

Later each of the Lagrangian algorithms overrides the methods depending on the characteristics of the algorithm, for
example, the theta search interval in LI is set according to constraint evaluation based on a bisection search, while in
LE, the theta values are determined uniformly between its minimum and maximum values.

The MA algorithm transfers the VariMetricModel into MAItemData for each LRU, that contains fields and

behaviors specific to marginal analysis implementation such as (,)i i i0α s s , ˆ ()i iα s , ˆ ()c
i iα s , and ˆ i

cS . This MAItemData

corresponds to each LRU in the system and computes the associated inputs. It also implements the convexification
and next marginal benefit associated with each item. VMMarginalAnlaysisAlgorithm provides procedures that
implement the steps described in Exhibit 4. The implementation allows for grid search over depot stock levels in the
computation of ˆ ()i iα s characterized by the incremental values provided as inputs for the algorithm.

920

Miman, Rossetti, Varghese, and Pohl

As mentioned, the object oriented structure, combined with the power of Java, provides great flexibility for
modifying the algorithms depending on the preferences and desired goals of specific implementations. For instance,
without changing everything, one can easily plug in their own optimization procedure based on a meta-heuristic.
This makes the research more distinguished from straight forward implementations of the optimization algorithms.
In the following section, a sample case that tests the performance of each algorithm and demonstrates the ease of use
of the objects is given.

4. Illustrative Example
To compare and illustrate the use of each algorithm, we provide simple test cases, whose optimal solution we can
obtain through the total enumeration, which is very cumbersome and requires problem specific recursive
formulation. The number of recursive loops in the total enumeration is n(m+1) with total feasible solutions (lower

bound) at the order of (1)
/ (max{ })

n m

ib c

.

Our test case consists of three LRUs, one depot and two bases as illustrated in Figure 2. Note that the dashed lines
indicated failed LRUs while the shaded one represents the repaired items. Exhibit 5 provides the self explanatory
code listing for how to use objects while the comparison of algorithms is provided in Table 1. All the algorithms are
run with maximum number of iterations of 10. LI and MA provides the optimal allocation within the budget while
the LE algorithm appears to be promising when the number of iterations increases. Overall, all of the algorithms
implemented have plusses and minuses, which can be improved through the flexible design of the optimization
package. These improvements are being explored as future research.

Figure 2: Illustrative Example

Table 1: Comparison of Algorithms for Illustrative Example

s*
10 s*

11 s*
12 s*

20 s*
21 s*

22 s*
30 s*

31 s*
32

Total
Cost($)

Total Expected
Base Backorders

LI 0 2 5 0 0 0 0 1 1 51 1.441180871
LE 0 2 5 0 0 1 0 1 1 54 1.266075189
MA 0 2 5 0 0 0 0 1 1 51 1.441180871

921

Miman, Rossetti, Varghese, and Pohl

// construct the VARIMETRIC model
VariMetricModel vm = new VariMetricModel(); // build VARIMETRIC system
// construct LRU 1 at the depot where s10=0, c1=$5.00, D1=0.02531
VMItem di1 = new VMItem(1, 0, 5.0, 0.02531);
// add associated LRU1 in bases according to Figure 2:
di1.addBaseItem(20, 0.02, 0.25, 0.05, 0, 5.0);
di1.addBaseItem(50, 0.015, 0.15, 0.07, 0, 5.0);
vm.addVMItem(di1); // add item to the Varimetric Model
// (the other LRUs can instantiated in a similar fashion where c2=$3.00, c5=$8.00)
// tell the model to optimize
double budget = 51.0; //define budget
double minTheta = 0.01; //user defined minTheta
double maxTheta = 0.125; //user defined maxTheta
int maxIterations = 10; //maximum number of iterations allowed
double budgetTolerance = 0.1; //budget tolerance
//define algorithm to use
VMLagrangeIterativeAlgorithm algo = new VMLagrangeIterativeAlgorithm(vm, budget,
maxIterations, budgetTolerance, minTheta, maxTheta);
boolean satisfied = algo.optimize(); //optimize the system using defined algorithm

Exhibit 5: Example Code for the use of Varimetric Package

5. Conclusions
In brief, although our development includes three currently existing algorithms: Lagrangian relaxation iterative
procedure, enumerative procedure for Lagrangian multiplier and marginal analysis, the object oriented structure
allows any user-defined algorithms to be plugged in. We have verified our package against the total enumeration
and well-known cases in the literature. Overall, the package we developed provides an optimization tool for
researchers as well as practitioners to utilize for the management of spare parts. As future research, we are
combining this package with a package that enables the simulation of supply systems [5] in order to develop tools
for updating policy parameters based on a variety of forecasting techniques. Further, we are also implementing
similar performance analysis and optimization packages for a classical inventory systems (e.g. (r, Q)) rather than just
for spare parts.

Acknowledgements
This material is based upon work supported by the U.S. Air Force Office of Sponsored Research and the Air Force
Research Laboratory. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

References
1. Guide, V.D.R., and Srivastava, R., 1997, “Repairable inventory theory: models and applications,”

European Journal of Operational Research, 102, pp.1-20.
2. Kennedy, W.J., Patterson, J.W., and Fredendall L.D., 2002, “An overview of recent literature on spare parts

inventories,” International Journal of Production Economics, 76, pp. 201-215.
3. Graves, S.C., 1985, “A multi-echelon inventory model for a repairable item with one-for-one

replenishment,” Management Science, Vol.31, pp.1247-1256.
4. Muckstadt, J. A., 2005, Analysis and Algorithms for Service Parts Supply Chains, Springer Science+Media,

Inc.
5. Rossetti, M., Miman, M., Varghese, V., and Xiang, Y. 2006. “An object-oriented framework for simulating

multi-echelon inventory systems”, In Proceedings of the 2006 Winter Simulation Conference, L. F. Perrone,
F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds., Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

6. Rossetti, M. D., Varhese, V., Miman, M., and Pohl, E. 2007. “An Object-Oriented Framework for
Simulating Inventory Systems with Forecast Driven Policy Optimization”, in preparation for the
Proceedings of the 2008 Winter Simulation Conference.

7. Rossetti, M. D., 2007, "JSL: An Open-Source Object-Oriented Framework for Discrete-Event Simulation
in Java," under review in International Journal for Simulation and Process Modeling

8. Sherbrooke, C. G. 1992. Optimal Inventory Modeling of Systems: Multi-Echelon Techniques, John-Wiley
& Sons.

922

