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Abstract

The intermittent demand forecasting problem invsltfee forecasting of demand series that are cteizet by the
time between demands being significantly largenttiee unit of time used for the forecast periodisTdauses the
time series associated with the demand to havege [@ercentage of periods for which there are moashels. These
types of series are often found in spare partsnitorg management systems. This paper examinestianittency
of a demand series by relating the lag-1 corralatioefficient of non-zero demand, squared coefiicaf variation
of non-zero demand and probability of zero of tlndnd series to the error properties of variouscsting
techniques. A classification method is presentedwiych a time series can be characterized in tesimkey
parameters related to intermittency and througé télationship the best of a set of forecastingrigpies can be
recommended. The method is illustrated on bothirgatmittent demand series and randomly genettitesl series
in order to understand the efficacy of the procedarimprove overall forecasting effectiveness.
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1. Introduction and Motivation

The Naval Aviation Maintenance Program (NAMP) of N8vy is a multi-echelon supply network with 3 lesveAt
the lower level the demand for a reparable sparegseves when the part fails. The demand at tighdr levels
occurs when the lower levels are unable to repairfailed spare part. The repair cycle may inclsidipping time,
processing time, repair time, waiting time, andwgl time. Because of the repair cycle as welhasfailure cycle,
the demand for repair and spare parts is oftemmitint in nature. Intermittent demand is chanazssl by demand
data that has many time periods with zero demdrdaever, other definitions can be found in therétare [11]
[1] [6], for intermittent demand. Intermittent denuhis hard to model using conventional distribusi@md is hard to
forecast. There have been several intermittent ddrf@ecasting techniques proposed in the liteeatur

The selection of the best forecasting techniqueafgiven demand series can be approached in sevayal The
most common approach is to select a forecastingnique that minimizes the forecast error using dhailable
demand history. Another approach is to forecastdam several forecasting techniques and subsdguembbine
the forecasted values into a single forecast. Aongt [2] recommends this as an appropriate approwtbad of
selecting a single forecasting technique. This paj@siders a demand categorization approach tosimg an
appropriate forecasting technique. We investighie approach’s usability in an intermittent demaeenario. In
this demand categorization scheme, the demand rdusrare categorized based on the forecast eramogs
several forecasting techniques). The forecast emdifficulty to forecast is related with the demdaattributes lag-1
correlation coefficient of non-zero demand, squareefficient of variation of non-zero demand andhability of
zero demand for the demand series of each demandrsc. The degree of intermittency of a demandaite can
be viewed as the difficulty to forecast the demaoehario or the forecast error associated witldémeand scenario.
Each demand category (high intermittency, mediut@rimittency and low intermittency) can be mappedddest
forecasting technique. Once the most appropriatecésting technique has been identified, it is usednake
forecasts for the demand series. The article tiigefollowing notations for the demand attributes.
¢1nz: 1ag-1 correlation coefficient of non-zero demand

»  CVZ,: squared coefficient of variation of non-zero deha
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» 1, probability of zero demand for the demand series

Through the perspective of forecast error 80 demsaeharios were ranked, and categorized in termisight
intermittency, mild intermittency and low internaittcy. An artificial demand generator created inghiase [15]
was used to simulate the demand scenarios of dabk categories. A comparative experimental ruthefvarious
intermittent demand forecasting techniques uposelt®&0 demand scenarios yielded a classificatioemnseh The
classification scheme holds the demand classifinatiand its attributes and the best forecastinginigqoe
associated with it. This research considered threchsting techniques: moving average, simple expie
smoothing, Croston’s method [3], Syntetos’ appration method [13], and a cumulative average (CAgdasting
method. We evaluated the efficacy of the clasdificascheme using randomly selected demand sefrige atems
from a US Navy inventory system. The classificat&rheme proposes the best forecasting techniqueaicin
demand series and subsequently its forecast emorbe computed. The recommended technique was then
compared with the forecast error associated wighetkisting forecasting technique (CA) for the dechaeries, We
saw considerable reduction in error in using thi®gorization scheme to choose the best forecastitgique.

1.1. Intermittent Demand and Categorization Scheme

The literature refers to the “hard to forecast” dech scenarios as intermittent demand, lumpy demaretic
demand, sporadic demand, slow-moving demand efd. cdten these words are used interchangeably which
amounts to much confusion. As previously discussieel,demands are generally characterized by thibu#s:
intermittence (or sporadicity) and lumpiness. Ulyahtermittent demand (or sporadic demand) isireef as
demand occurring randomly with many time periodghwero demands. However, this limits the defimitio the
attribute of intermittence or sporadicity. Silvdrl] proposed a definition for intermittent demarsd“iafrequent in
the sense that the average time between consecutive transactions is considerably larger than the unit time period,
the latter being the interval of forecast updating.” Smart [1] defined intermittent demand as a desnseries with at
least 30 % of zero demand. Representative US N&®Y ifiventory managers consider those demand seitbs
less than or equal to 60 - 70 % non-zero demandsatesmittent. Johnston et al. [6] proposed thath# mean
interval between non-zero demands is 1.25 timeatgréhan the inventory review period, the demaartes can be
considered as intermittent. Most of the definitiaisntermittent demand (or sporadic demand) doinciude the
demand attribute: lumpiness. Slow demands are Iystefined as those with infrequent demands, wiicbur in
very few units [7] [13] [19]. Slow demands are uBuantermittent demands. Meanwhile erratic (oregular)
demand is described as in [13] as patterns witln higriability in non-zero demands. Syntetos [13%dzh his
definition on the demand size and excluded demacidénce and so did Silver [11]. Syntetos [13] wkedi lumpy
demand as those demand patterns with some zeroadsraad with non-zero demand having high variabilite
considered all lumpy demands as intermittent desiahdwever not all intermittent demand is lumpy dech
Ward [17] also used intermittent demand and lumpynand interchangeably. These types of demand sesnar
overlap with similar characterizations of intermitt demand. In this paper we view these demandasosrby the
difficulty to forecast or the error associated viltk demand scenario.

William’s categorization scheme [19] is one of #aliest ones of its kind and is based on a corzadfid variance
partitioning, in which the variance of the lead ¢irdemand is split, to classify the demand. Hissifi@ation

represented intermittence, by how often the denmmodrs during the lead time. He also considered/éinance of
non-zero demand, commonly called as lumpiness.r&igjuishows the categorization scheme proposed biakvé

[19]. The Category D2 in the scheme indicates lighloradic demand characterized by high interngtteand high
lumpiness. The Category B represents a slow-mawnventory and others are classified as smooth ddrpatterns.
The cut-off value was assigned based on the invgstgstem that William observed for his 1984 studgnce, the
applicability of this scheme is problematic. Syatetet al. [13] [14] in their research on intermittedemand
forecasting techniques, proposed a demand categjorizscheme with recommendations for an apprapaat-off

value for squared coefficient of variation and méaerval between non-zero demands. They compdredniean
square error of the forecasting technique Simpl@oBential Smoothing (or Exponentially Weighted Muyi
Average), and Croston’s approach [3], with thathaf forecasting technique proposed by Syntetos [Rigure 2

illustrates their categorization scheme, where &edi indicates erratic demand, Region 2 indicategly demand,
Region 3 indicates smooth demand and Region 4atedntermittent demand. In this scheme alsogrnitiency is

associated with a high percentage of zero demands.

The research literature on demand classificatimeals that most of the schemes consider only intemnee and
lumpiness. In this paper we consider dependeneceu@hae, ) in addition to intermittence and lumpiness. The
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demand classification and the resulting technigeebeased on forecast error (across a wide randeretasting
techniques). The application of the classificattmheme will be in the mapping of the demand clatséts best
forecasting technique. Using this mapping, we ceedipt the best forecasting technique for a givemand
scenario.

Lumpiness
p=1.32(cut - off value)

|
0.5

& C
0.7 Intermittence 1 2

E D1 N
b o

3 4
Figure 1 William’s Categorization Scheme Figure 2 Syntetos Categorization Scheme

1.3 Intermittent Demand For ecasting

The simpler traditional forecasting methods likenglie exponential smoothing and moving average dteno
unsuitable in intermittent demand scenarios. Thae several forecasting techniques relevant fogrinittent
demand. These techniques are discussed in det&ihighese [15] and by the authors in another pppegented in
this conference [16]. Croston’s [3] approach amdviriant Syntetos [13] are two of the primary téghes. In
addition to these approaches, Willemain [18] depetb a non-parametric bootstrapping approach fotiecas
especially intermittent demand. Meanwhile, Snyde?] [proposed a parametric bootstrapping to foraugastiow
demand. The performance of forecasting technigar$e measured by the forecast error's mean aksdwiation
(MAD), mean square error (MSE) and mean absolutegpgéage error (MAPE). Though MAD, MSE and MAPE are
sufficient to compare between errors associatel @ach of the demand scenarios, when it comesetuifging the
best forecasting technique the winners may be réiffeacross each of these error metrics. Becaussutifple
measures for error, we apply a multi-criteria apgto when analyzing which forecasting technique thasbest
performance. We refer the reader to [4] or [9]fiather information on these techniques. The objeds to find
the best forecasting technique with the metrics MAD, low MSE and low MAPE. Given the MAD, MSE and
MAPE related to each forecasting technique, thay lsa scaled to a 0 to 1 scale by the normalizinghotk
discussed in [4]. Now by the weighted arithmeticamenethod, the scaled MAD, scaled MSE and scale®?Eéan
be weighted to form an overall objective. The wéghmean gives performance taking into accourthallmetrics
according to its weighted priority. Our techniqueoses the forecasting technique with least weibhateor as the
winner. This winner is specific to the priority giv by the inventory manager on each of the metwicthis paper,
we consider equal error-weighing policies whoseghsid averages are computed as in Equation 1.

1 1 1
Weighted Error = §MADscaled + §MSEscaled + §MAPEscaled ¢))

2. Experiment and Results

The experiments require the generation of varicersahd scenarios based on the demand attribyte®/2, and
¢1 vz We create the demand scenario and, for eachitidex, we make a forecast according to its kindhgathe
demand, and compute the error measures associatiecthe forecasting technique. Subsequently, weehiav
identify highly intermittent demand sources configg by attributest,, CV¢, and¢, v, based on forecast error
(across several forecasting techniques). Asseshmmgause-effect interaction, with the error measueing the
effect, we cataloged the factors that are relet@the experiment. The error varies with the fosticg technique
and hence will be one of the factors. This qualieawvariable will have the forecasting techniqueattwe have
selected, as various levels. The forecasting mettizat we examined are Simple Exponential Smoottaying
Average, Croston’s approach, Syntetos’ and Boyld@pproximation method and Cumulative Average. Ténels
are: Simple Exponential Smoothing with alpha vaue and 0.2, Moving Average with N value 19 andCgyston
with alpha value 0.1 and 0.2, Syntetos’ and Boyafjpproximation method with alpha value 0.1and Gafd
Cumulative average. Comparison across demand sognéth distinct attribute values is required ider to create
the demand classification scheme. We fix the leedlshese factors such that, they range acrosseptative
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intermittent demand patterns. For the experimehts,levels listed in Table 1 were used. Each dep@nt was
replicated 50 times. Note that the demand attribyitelds 80 demand scenarios, which will be congpameorder to
create the categorization scheme. Varghese [17hiepall the details for how the experiments aiéd lout and
executed.

Table 1 Experimental Design

Factors Levels

Forecasting Technique SES(0.1), SES(0.2), MA(19\(), Croston(0.1),
Croston(0.2), Syntetos(0.1), Syntetos(0.2) and CA

Squared coefficient of variance of demand 0.25,0.%, 0.95

Probability of zero of demand series 0.1, 0.3, 06?25

Lag 1 correlation coefficient of demand -0.8, -@A, +0.2, +0.8

2.1 M CB Technique across demand scenarios

The comparison of each of the 80 demand scenabiasied on MAD, MSE and weighted error using Hsutdtidle
Comparison with Best (MCB) to determine the mogerimittent series. At each of these levels, the at&n
scenarios with high error were identified, rankadd categorized. Hsu’'s approach compares eachrazavith the
best of the remaining scenarios [5] [8]. When comagawith other multiple comparison techniques, suld MCB
approach, the comparison procedure is implememtedsingle-stage. In addition, the relative perfamoe of each
demand scenario can be estimated. As an illustratiee confidence intervals for the MCB statistifsSyntetos
(0.2) at¢p, y, = —0.8 are included in Table 2. The scenario with thedpmterval O is the best case. In the table,
the scenario witlV;2, = 0.95 andm, = 0.095238 is the best scenario. In other words, the higbreémplies a
highly intermittent scenario. The relative performoa of other scenarios can be also interpretedekample, the
scenario withCV;2, = 0.95 andr, = 0.297872 with the lower interval at -1.004 can be interpcklas a demand
scenario that cannot be 1.004 more intermittent tha best demand scenario.

Table 2 Confidence Interval of Hsu’s MCB Proced8yatetos (0.2) &t v, = —0.8

Level of CVZ,andr, | Lower | Center | Uppel Level éVZ,andr, | Lower | Center | Uppef
0.25,0.095238 -14.114 -13.882 0 0.75,0.095238 8R1|9-11.757| O
0.25,0.297872 -13.97p -13.747 0 0.75,0.297872 7BL{9-11.747| O
0.25,0.518519 -13.96p -13.731 0 0.75,0.518519 4R|3-12.117| 0
0.25,0.750000 -14.11p -13.881 0 0.75,0.750000 3’|0-12.807| 0O
0.50,0.095238 -13.52B -13.292 0 0.95,0.095238 0 73.7| 1.004
0.50,0.297872 -13.46p -13.234 0 0.95,0.297872 4.900:0.773 | O
0.50,0.518519 -13.56B -13.337 0 0.95,0.518519 2142509 | 0
0.50,0.750000 -13.8844 -13.6%3 0 0.95,0.750000 4$6.946.712 | 0

Table 2 identifies the 4 demand scenarios whigf,of 0.95 as the one with highest forecast errorlof@d by
these scenarios are the demand scenariosCWih: 0.75, 0.5 and 0.25 ranked in the descending astiéorecast
error. In addition, it should be noted that &#2,=0.95, as ther, increases, the forecast error decreases. But at
CViZ,=0.5 and 0.25, we see that as#heincreases the forecast error increases for a \ahitethen starts decreasing.

It can be inferred that when lumpiness is smallfdrecast error increases witly and then starts decreasing. In
addition to this, we observe that the forecastreassociated with the demand scenarios ha@li=0.5 and 0.25

are very low i.e. with low intermittency. Meanwhillee demand scenarios witlir,?,=0.95 are highly intermittent
followed by the demand scenarios withi2,=0.75 with relatively medium.

The above inferences were made based on the desoandrios withp, v, = —0.8 and the comparison based upon
the MAD associated with Syntetos (0.2). When we garad the demand scenarios using the MAD as wéll$&

and weighted error of the other forecasting tealesg we came up with the same inferences. The M@8 also
made between the demand-scenarios within the tehels ofg, .. This also yielded the same inferences. Besides,
another MCB was performed across all the 80 densardarios (i.e. comparing all the 80 scenariosthagg and

the trends observed in the error. This also yieltleel same inferences. The categorization schemebean
summarized as: demand scenarios Wit},=0.95 are highly intermittent followed by the derdastenarios with
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CV%,=0.75 with relatively medium intermittency and filyahe demand scenarios witVy,=0.5 or 0.25 with low
intermittency.

2.2 M CB Technique across Forecasting Techniques

If the categorization scheme can be used to inglitta¢ best forecasting technique, then it may henmortant
practical applications. In each of the 80 levelsdefmand, we compared the forecasting techniquesdbais the
weighted error. The multiple comparisons were dopeising Hsu’'s approach, and the best forecastiogniques
were selected for each of the 80 demand scenafhwes.forecasting technique that was most repeatédinva
category was considered as the best forecastihgitpee within that demand category. Subsequentydaveloped

a classification table that covers extensive ramgfedemand characteristics and the best forecaséngnique
associated with the range. This can be implemeirtedn inventory system to make recommendations on
forecasting techniques most appropriate to a pdatictem. An example classification table is giverrigure 3.

A
. Leveis of
@ Imtarmitiency CVS. PZ
L
g 085, 0085238
— Hiah 005, 0267872
g on 085, 0518519
b 0.85 0750000
e
=
= 0.75, 0085238
= a3
s | 32 82T
0.75, 0, 750000
High — Syntetos| 0.5, 0.095238
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[ | | I | . o
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Figure 3 Recommended Forecasting Technique by Wasidarror

Figures 3 recommends a forecasting technique baseequally weighing MAD, MSE, and MAPE. The X-axis
consists of the level of lag 1 correlation of thendnd series under study. The Y-axis plots the, higgdium and
low intermittence. The intermittence categories tvar corresponding;andCV;, levels are listed in the table at
the right side of the chart. In order to use tH#etathe correlation level and the intermittencyeleof the demand
series must first be identified. For examplerj=0.75 and’V;?,=0.95, the table suggests that the demand is
characterized as highly intermittent. Then, if tHesmand is non-correlated, the forecasting teclngpitable for
non-correlated high intermittent demand from tharthCA (in this case) can be selected.

Twenty stock items were randomly selected from aN#sy inventory system. The corresponding demanmigse
were analyzed. After calculating the demand charatics, the values were identified in the chant ahe
corresponding recommended forecasting techniquee se&lected. For the randomly selected demandsstre
current technique was the cumulative average metfda percentage difference as well as the diffegebetween
the MAD associated with CA and the MAD associatdth ihe forecasting technique recommended by thetch
was calculated. Both indicated that significantdéfgrcan be achieved by using the chart to seleetférecasting
technique. For example, we observed that follovihngy forecasting technique suggested by the chamvéighted
error will cause an average percentage reductiohG% on MAD. The analysis suggested significaadifits in
using the chart-recommended forecasting technigueder to improve overall forecast accuracy.

3. Conclusions and Future Resear ch
The results from this preliminary study show thatassification procedure can be developed and tesebdoose an
appropriate forecasting technique for demand seFRgst, the estimates of the three demand ate®temand
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attribute vector) of the stock keeping unit are patad. Second, the corresponding demand categadgngified
and then the forecasting technique to which the asheincategory is mapped is chosen. This meta-faiagas
technique was applied on a real data and was feaumeduce the forecast error, when compared wighetkisting
technique. Future work will consider better cldsatiion approaches based on the best forecastmgitpie itself
instead of the forecast error. Using Multinomialgisiic Regression, Discriminant Analysis, Nearegtigibor
Clustering or Artificial Neural Networks, we caraitn the classifier to predict the best forecasteghnique based
on demand attributes computed from a demand seBash a classifier would be of great benefit wheed within
a large enterprise resource planning system tehsemost appropriate forecast technique for a gstek item
automatically.
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