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Abstract 
 
The intermittent demand forecasting problem involves the forecasting of demand series that are characterized by the 
time between demands being significantly larger than the unit of time used for the forecast period. This causes the 
time series associated with the demand to have a large percentage of periods for which there are no demands. These 
types of series are often found in spare parts inventory management systems. This paper examines the intermittency 
of a demand series by relating the lag-1 correlation coefficient of non-zero demand, squared coefficient of variation 
of non-zero demand and probability of zero of the demand series to the error properties of various forecasting 
techniques. A classification method is presented by which a time series can be characterized in terms of key 
parameters related to intermittency and through this relationship the best of a set of forecasting techniques can be 
recommended. The method is illustrated on both real intermittent demand series and randomly generated time series 
in order to understand the efficacy of the procedure to improve overall forecasting effectiveness. 
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1. Introduction and Motivation 
The Naval Aviation Maintenance Program (NAMP) of US Navy is a multi-echelon supply network with 3 levels. At 
the lower level the demand for a reparable spare part arrives when the part fails. The demand at the higher levels 
occurs when the lower levels are unable to repair the failed spare part. The repair cycle may include shipping time, 
processing time, repair time, waiting time, and delivery time. Because of the repair cycle as well as the failure cycle, 
the demand for repair and spare parts is often intermittent in nature. Intermittent demand is characterized by demand 
data that has many time periods with zero demands. However, other definitions can be found in the literature [11] 
[1] [6], for intermittent demand. Intermittent demand is hard to model using conventional distributions and is hard to 
forecast. There have been several intermittent demand forecasting techniques proposed in the literature.  
 
The selection of the best forecasting technique for a given demand series can be approached in several ways. The 
most common approach is to select a forecasting technique that minimizes the forecast error using the available 
demand history. Another approach is to forecast based on several forecasting techniques and subsequently combine 
the forecasted values into a single forecast. Armstrong [2] recommends this as an appropriate approach instead of 
selecting a single forecasting technique. This paper considers a demand categorization approach to choosing an 
appropriate forecasting technique. We investigate this approach’s usability in an intermittent demand scenario. In 
this demand categorization scheme, the demand scenarios are categorized based on the forecast errors (across 
several forecasting techniques). The forecast error or difficulty to forecast is related with the demand attributes lag-1 
correlation coefficient of non-zero demand, squared coefficient of variation of non-zero demand and probability of 
zero demand for the demand series of each demand scenario. The degree of intermittency of a demand scenario can 
be viewed as the difficulty to forecast the demand scenario or the forecast error associated with the demand scenario. 
Each demand category (high intermittency, medium intermittency and low intermittency) can be mapped to its best 
forecasting technique. Once the most appropriate forecasting technique has been identified, it is used to make 
forecasts for the demand series.  The article uses the following notations for the demand attributes. 

• ��,��: lag-1 correlation coefficient of non-zero demand 
• ����

� : squared coefficient of variation of non-zero demand 
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• 	�: probability of zero demand for the demand series 
 
Through the perspective of forecast error 80 demand scenarios were ranked, and categorized in terms of high 
intermittency, mild intermittency and low intermittency. An artificial demand generator created in Varghese [15] 
was used to simulate the demand scenarios of each of the categories. A comparative experimental run of the various 
intermittent demand forecasting techniques upon these 80 demand scenarios yielded a classification scheme. The 
classification scheme holds the demand classifications and its attributes and the best forecasting technique 
associated with it. This research considered the forecasting techniques: moving average, simple exponential 
smoothing, Croston’s method [3], Syntetos’ approximation method [13], and a cumulative average (CA) forecasting 
method. We evaluated the efficacy of the classification scheme using randomly selected demand series of the items 
from a US Navy inventory system. The classification scheme proposes the best forecasting technique for each 
demand series and subsequently its forecast error can be computed.  The recommended technique was then 
compared with the forecast error associated with the existing forecasting technique (CA) for the demand series, We 
saw considerable reduction in error in using this categorization scheme to choose the best forecasting technique.  
 
1.1. Intermittent Demand and Categorization Scheme 
The literature refers to the “hard to forecast” demand scenarios as intermittent demand, lumpy demand, erratic 
demand, sporadic demand, slow-moving demand etc. and often these words are used interchangeably which 
amounts to much confusion. As previously discussed, the demands are generally characterized by the attributes: 
intermittence (or sporadicity) and lumpiness. Usually, intermittent demand (or sporadic demand) is defined as 
demand occurring randomly with many time periods with zero demands. However, this limits the definition to the 
attribute of intermittence or sporadicity. Silver [11] proposed a definition for intermittent demand as “infrequent in 
the sense that the average time between consecutive transactions is considerably larger than the unit time period, 
the latter being the interval of forecast updating.” Smart [1] defined intermittent demand as a demand series with at 
least 30 % of zero demand. Representative US Navy [10] inventory managers consider those demand series with 
less than or equal to 60 - 70 % non-zero demands as intermittent. Johnston et al. [6] proposed that if the mean 
interval between non-zero demands is 1.25 times greater than the inventory review period, the demand series can be 
considered as intermittent. Most of the definitions of intermittent demand (or sporadic demand) do not include the 
demand attribute: lumpiness. Slow demands are usually defined as those with infrequent demands, which occur in 
very few units [7] [13] [19]. Slow demands are usually intermittent demands. Meanwhile erratic (or irregular) 
demand is described as in [13] as patterns with high variability in non-zero demands. Syntetos [13] based his 
definition on the demand size and excluded demand incidence and so did Silver [11]. Syntetos [13] defined lumpy 
demand as those demand patterns with some zero-demands and with non-zero demand having high variability. He 
considered all lumpy demands as intermittent demands; however not all intermittent demand is lumpy demand. 
Ward [17] also used intermittent demand and lumpy demand interchangeably. These types of demand scenarios 
overlap with similar characterizations of intermittent demand. In this paper we view these demand scenarios by the 
difficulty to forecast or the error associated with the demand scenario. 
 
William’s categorization scheme [19] is one of the earliest ones of its kind and is based on a concept called variance 
partitioning, in which the variance of the lead time demand is split, to classify the demand. His classification 
represented intermittence, by how often the demand occurs during the lead time. He also considered the variance of 
non-zero demand, commonly called as lumpiness. Figure 1 shows the categorization scheme proposed by Williams 
[19]. The Category D2 in the scheme indicates highly sporadic demand characterized by high intermittence and high 
lumpiness. The Category B represents a slow-moving inventory and others are classified as smooth demand patterns. 
The cut-off value was assigned based on the inventory system that William observed for his 1984 study. Hence, the 
applicability of this scheme is problematic. Syntetos et al. [13] [14] in their research on intermittent demand 
forecasting techniques, proposed a demand categorization scheme with recommendations for an appropriate cut-off 
value for squared coefficient of variation and mean interval between non-zero demands. They compared the mean 
square error of the forecasting technique Simple Exponential Smoothing (or Exponentially Weighted Moving 
Average), and Croston’s approach [3], with that of the forecasting technique proposed by Syntetos [13]. Figure 2 
illustrates their categorization scheme, where Region 1 indicates erratic demand, Region 2 indicates lumpy demand, 
Region 3 indicates smooth demand and Region 4 indicates intermittent demand. In this scheme also, intermittency is 
associated with a high percentage of zero demands. 
 
The research literature on demand classification reveals that most of the schemes consider only intermittence and 
lumpiness. In this paper we consider dependence (through ��,��) in addition to intermittence and lumpiness. The 
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demand classification and the resulting technique are based on forecast error (across a wide range of forecasting 
techniques). The application of the classification scheme will be in the mapping of the demand classes to its best 
forecasting technique. Using this mapping, we can predict the best forecasting technique for a given demand 
scenario. 

 
Figure 1 William’s Categorization Scheme 

 
Figure 2 Syntetos Categorization Scheme 

 
1.3 Intermittent Demand Forecasting 
The simpler traditional forecasting methods like simple exponential smoothing and moving average are often 
unsuitable in intermittent demand scenarios. There are several forecasting techniques relevant for intermittent 
demand. These techniques are discussed in detail by Varghese [15] and by the authors in another paper presented in 
this conference [16]. Croston’s [3] approach and its variant Syntetos [13] are two of the primary techniques. In 
addition to these approaches, Willemain [18] developed a non-parametric bootstrapping approach forecasting 
especially intermittent demand. Meanwhile, Snyder [12] proposed a parametric bootstrapping to forecasting slow 
demand. The performance of forecasting techniques can be measured by the forecast error’s mean absolute deviation 
(MAD), mean square error (MSE) and mean absolute percentage error (MAPE). Though MAD, MSE and MAPE are 
sufficient to compare between errors associated with each of the demand scenarios, when it comes to identifying the 
best forecasting technique the winners may be different across each of these error metrics. Because of multiple 
measures for error, we apply a multi-criteria approach when analyzing which forecasting technique has the best 
performance. We refer the reader to [4] or [9] for further information on these techniques. The objective is to find 
the best forecasting technique with the metrics low MAD, low MSE and low MAPE. Given the MAD, MSE and 
MAPE related to each forecasting technique, they can be scaled to a 0 to 1 scale by the normalizing method 
discussed in [4]. Now by the weighted arithmetic mean method, the scaled MAD, scaled MSE and scaled MAPE can 
be weighted to form an overall objective. The weighted mean gives performance taking into account all the metrics 
according to its weighted priority. Our technique chooses the forecasting technique with least weighted error as the 
winner. This winner is specific to the priority given by the inventory manager on each of the metrics. In this paper, 
we consider equal error-weighing policies whose weighted averages are computed as in Equation 1.  
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2. Experiment and Results 
The experiments require the generation of various demand scenarios based on the demand attributes 	�, ����

�  and 
��,��. We create the demand scenario and, for each time index, we make a forecast according to its kind, gather the 
demand, and compute the error measures associated with the forecasting technique. Subsequently, we have to 
identify highly intermittent demand sources configured by attributes 	� , ����

�  and ��,��  based on forecast error 
(across several forecasting techniques). Assessing the cause-effect interaction, with the error measures being the 
effect, we cataloged the factors that are relevant to the experiment. The error varies with the forecasting technique 
and hence will be one of the factors. This qualitative variable will have the forecasting techniques that we have 
selected, as various levels. The forecasting methods that we examined are Simple Exponential Smoothing, Moving 
Average, Croston’s approach, Syntetos’ and Boylan’s Approximation method and Cumulative Average. The levels 
are: Simple Exponential Smoothing with alpha value 0.1 and 0.2, Moving Average with N value 19 and 9, Croston 
with alpha value 0.1 and 0.2, Syntetos’ and Boylan’s Approximation method with alpha value 0.1and 0.2  and 
Cumulative average. Comparison across demand scenarios with distinct attribute values is required in order to create 
the demand classification scheme. We fix the levels of these factors such that, they range across representative 
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intermittent demand patterns. For the experiments, the levels listed in Table 1 were used. Each design point was 
replicated 50 times. Note that the demand attributes yields 80 demand scenarios, which will be compared in order to 
create the categorization scheme. Varghese [17] explains all the details for how the experiments are laid out and 
executed. 
 

Table 1 Experimental Design 
Factors Levels 
Forecasting Technique SES(0.1), SES(0.2), MA(19), MA(9), Croston(0.1), 

Croston(0.2), Syntetos(0.1), Syntetos(0.2) and CA 
Squared coefficient of variance of demand 0.25, 0.5, 0.75, 0.95 
Probability of zero of demand series 0.1, 0.3, 0.52, 0.75 
Lag 1 correlation coefficient of demand -0.8, -0.2, 0.0, +0.2, +0.8 

 
2.1 MCB Technique across demand scenarios 
The comparison of each of the 80 demand scenario is based on MAD, MSE and weighted error using Hsu’s Multiple 
Comparison with Best (MCB) to determine the most intermittent series. At each of these levels, the demand 
scenarios with high error were identified, ranked, and categorized. Hsu’s approach compares each scenario with the 
best of the remaining scenarios [5] [8]. When compared with other multiple comparison techniques, in Hsu’s MCB 
approach, the comparison procedure is implemented in a single-stage. In addition, the relative performance of each 
demand scenario can be estimated. As an illustration, the confidence intervals for the MCB statistics of Syntetos 
(0.2) at ��,�� � &0.8 are included in Table 2. The scenario with the lower interval 0 is the best case. In the table, 
the scenario with ����

� � 0.95 and 	� � 0.095238 is the best scenario.  In other words, the high error implies a 
highly intermittent scenario. The relative performance of other scenarios can be also interpreted. For example, the 
scenario with ����

� � 0.95 and 	� � 0.297872 with the lower interval at -1.004 can be interpreted as a demand 
scenario that cannot be 1.004 more intermittent than the best demand scenario.  
 

Table 2 Confidence Interval of Hsu’s MCB Procedure Syntetos (0.2) at��,�� � &0.8 

Level of ����
� and 	� Lower Center Upper Level of ����

� and 	� Lower Center Upper 
0.25,0.095238 -14.114 -13.882 0 0.75,0.095238 -11.988 -11.757 0 
0.25,0.297872 -13.979 -13.747 0 0.75,0.297872 -11.978 -11.747 0 
0.25,0.518519 -13.962 -13.731 0 0.75,0.518519 -12.348 -12.117 0 
0.25,0.750000 -14.112 -13.881 0 0.75,0.750000 -13.038 -12.807 0 
0.50,0.095238 -13.523 -13.292 0 0.95,0.095238 0 0.773 1.004 
0.50,0.297872 -13.466 -13.234 0 0.95,0.297872 -1.004 -0.773 0 
0.50,0.518519 -13.568 -13.337 0 0.95,0.518519 -2.74 -2.509 0 
0.50,0.750000 -13.884 -13.653 0 0.95,0.750000 -6.944 -6.712 0 

 

 
Table 2 identifies the 4 demand scenarios when ����

� of 0.95 as the one with highest forecast error. Followed by 
these scenarios are the demand scenarios with ����

� : 0.75, 0.5 and 0.25 ranked in the descending order of forecast 
error. In addition, it should be noted that for ����

� =0.95, as the 	� increases, the forecast error decreases. But at 
����

� =0.5 and 0.25, we see that as the 	� increases the forecast error increases for a while and then starts decreasing. 
It can be inferred that when lumpiness is small the forecast error increases with 	� and then starts decreasing. In 
addition to this, we observe that the forecast error associated with the demand scenarios having ����

� =0.5 and 0.25 
are very low i.e. with low intermittency. Meanwhile the demand scenarios with ����

� =0.95 are highly intermittent 
followed by the demand scenarios with ����

� =0.75 with relatively medium. 
 
The above inferences were made based on the demand scenarios with ��,�� � &0.8 and the comparison based upon 
the MAD associated with Syntetos (0.2). When we compared the demand scenarios using the MAD as well as MSE 
and weighted error of the other forecasting techniques, we came up with the same inferences. The MCB was also 
made between the demand-scenarios within the other levels of ��,��. This also yielded the same inferences. Besides, 
another MCB was performed across all the 80 demand scenarios (i.e. comparing all the 80 scenarios together), and 
the trends observed in the error. This also yielded the same inferences. The categorization scheme can be 
summarized as: demand scenarios with ����

� =0.95 are highly intermittent followed by the demand scenarios with 
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����
� =0.75 with relatively medium intermittency and finally the demand scenarios with ����

� =0.5 or 0.25 with low 
intermittency.  
 
2.2 MCB Technique across Forecasting Techniques 
If the categorization scheme can be used to indicate the best forecasting technique, then it may have important 
practical applications. In each of the 80 levels of demand, we compared the forecasting techniques based on the 
weighted error. The multiple comparisons were done by using Hsu’s approach, and the best forecasting techniques 
were selected for each of the 80 demand scenarios. The forecasting technique that was most repeated within a 
category was considered as the best forecasting technique within that demand category. Subsequently, we developed 
a classification table that covers extensive ranges of demand characteristics and the best forecasting technique 
associated with the range.  This can be implemented in an inventory system to make recommendations on 
forecasting techniques most appropriate to a particular item. An example classification table is given in Figure 3.  
 

 
Figure 3 Recommended Forecasting Technique by Weighted Error 

 
Figures 3 recommends a forecasting technique based on equally weighing MAD, MSE, and MAPE. The X-axis 
consists of the level of lag 1 correlation of the demand series under study. The Y-axis plots the high, medium and 
low intermittence. The intermittence categories and their corresponding 	�and ����

�  levels are listed in the table at 
the right side of the chart. In order to use the table, the correlation level and the intermittency level of the demand 
series must first be identified. For example, if 	� =0.75 and����

� =0.95, the table suggests that the demand is 
characterized as highly intermittent. Then, if this demand is non-correlated, the forecasting technique suitable for 
non-correlated high intermittent demand from the chart: CA (in this case) can be selected.  
 
Twenty stock items were randomly selected from a US Navy inventory system. The corresponding demand series 
were analyzed. After calculating the demand characteristics, the values were identified in the chart and the 
corresponding recommended forecasting techniques were selected. For the randomly selected demand series the 
current technique was the cumulative average method.  The percentage difference as well as the difference between 
the MAD associated with CA and the MAD associated with the forecasting technique recommended by the chart 
was calculated. Both indicated that significant benefit can be achieved by using the chart to select the forecasting 
technique. For example, we observed that following the forecasting technique suggested by the chart for weighted 
error will cause an average percentage reduction of 7.03% on MAD. The analysis suggested significant benefits in 
using the chart-recommended forecasting technique in order to improve overall forecast accuracy.  
 
3. Conclusions and Future Research 
The results from this preliminary study show that a classification procedure can be developed and used to choose an 
appropriate forecasting technique for demand series. First, the estimates of the three demand attributes (demand 
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attribute vector) of the stock keeping unit are computed. Second, the corresponding demand category is identified 
and then the forecasting technique to which the demand category is mapped is chosen. This meta-forecasting 
technique was applied on a real data and was found to reduce the forecast error, when compared with the existing 
technique. Future work will consider better classification approaches based on the best forecasting technique itself 
instead of the forecast error. Using Multinomial Logistic Regression, Discriminant Analysis, Nearest Neighbor 
Clustering or Artificial Neural Networks, we can train the classifier to predict the best forecasting technique based 
on demand attributes computed from a demand series.  Such a classifier would be of great benefit when used within 
a large enterprise resource planning system to set the most appropriate forecast technique for a given stock item 
automatically. 
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