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Abstract 

The transportation network of any large manufacturing or retail company is often initially designed and periodically 
refined to minimize some function of cost.  In this paper, we develop an integer linear programming model for the 
distribution network of a large company from a strategic planning perspective.  Specifically, we are interested in 
future network expansion and contraction opportunities and how these phenomena affect network utilization, the 
company’s operational approaches, and transportation asset utilization.  The model formulation is presented, 
followed by some preliminary results. 
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1. Introduction 
Network-structured problems arise directly or indirectly in many practical scenarios where physical flow transfers 
occur between a set of origin points (supply nodes) and a set of destination points (demand nodes) [1].  This physical 
flow can be associated with modal types used to transfer a combination of goods and/or people via links to and from 
origin and destination points.  The decisions to be made in network optimization problems include the location of 
supply nodes, transportation routing, inventory allocation, scheduling of flow between supply and demand nodes, 
and the design of links within the network [1]. 
 
Numerous studies have been conducted and documented to determine such decision variables in a distribution 
network.  Akyilmaz [2] presents a framework of algorithms that route Less-than Truck Load (LTL) shipments via 
intermediate terminals.  Pirkul and Jayaraman [3] develop a mixed integer programming (MIP) model for the plant 
and warehouse location problem.  The objective to the model is to minimize total transportation and distribution 
costs, including fixed plant opening and operating costs, as well as warehouse costs.  Sharma and Saxena [4] present 
a special case of the transshipment problem wherein flow occurs strictly between supplier plants and intermediate 
facilities and between intermediate facilities and the end customer market. 
 
These previous studies have presented formulations for the optimal assignment of entities in various types of 
distribution networks for some single time period of interest.  In this paper, we expand on the formulations of 
previous studies to include multiple time periods and to incorporate the refining or updating component of 
transportation distribution network strategic planning.  In the transportation industry, transportation networks are 
often refined to minimize costs.  This refinement can either be an expansion or a contraction within the existing 
network.  Often, the complex network of suppliers, intermediate consolidation centers (ICC), and distribution 
centers (DCs) that exists throughout the country creates the need for periodic review of both supplier to ICC and 
ICC to DC assignments.  Another question of interest often pertains to the choice of transportation mode that should 
be used to transport goods between ICCs and DCs (i.e., air, highway, rail, etc.).  When faced with growing demand, 
companies frequently wish to identify strategic locations for future ICCs.  Alternately, companies may also need to 
determine which ICC(s) should be closed under low volume conditions. 
 
In this paper, we model the distribution network of a large company that is composed of a number of complex 
product distribution “subnetworks” that are used to transport various types of goods.  In terms of our overall 
research agenda, we seek to identify what type(s) of strategic network updates/refinements could be performed to 
further minimize distribution and operating costs.  Some preliminary results are presented for a scaled-down version 
of true distribution network complexity to promote understanding of our model outputs.  Section 2 describes the 
distribution network of interest, followed by our MIP model formulation in Section 3.  After preliminary 



experimental results are discussed in Section 4, preliminary conclusions and directions for future research are 
presented in Section 5. 
 
2. Distribution Network Operations 
Consider a transportation distribution network consisting of a set of I  suppliers, a set of J  ICCs, and a set of K  
DCs (Figure 1).  For each load being shipped from ICC Jj∈  to DC Kk ∈ , the company utilizes up to three 
types of transportation:  rail, full truckload (TL), and intermodal (i.e., a combination of rail and TL).  Each load 
shipped from supplier Ii∈  to ICC Jj∈  is always made via LTL transportation. 
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Figure 1.  Transportation Options for Distribution Network Under Study 
 
Distribution operations within the network are initiated when some quantity of demand, expressed in pounds, for a 
specific product type is generated by DC Kk ∈ .  Once appropriate suppliers are informed of the demand, they 
notify DC Kk ∈  of their ability to fulfill the demand for the requested product.  Once supplier Ii∈  is instructed 
to fulfill the DC’s demand, supplier Ii∈  ships the requested product to a nearby ICC via LTL transport.  
Demanded products get consolidated at each ICC Jj∈  and then are shipped to the requesting DC by the 
minimum cost transportation option. 
 
3. Optimization Model Formulation 
Demand at each DC can only be fulfilled by those suppliers that stock the requested product type.  The objective of 
the proposed optimization model is to determine, for a given demand profile (by DC in pounds), which ICC should 
service which DC, and by which mode of transportation this service should occur, so that distribution costs are 
minimized.  This section details the optimization model formulation by first describing model sets and parameters, 
then decision variables, followed by the objective function and corresponding problem constraints. 
 

Sets and Indices 
  I   suppliers ( Ii ...1= ) 

  J   ICCs ( Jj ...1= ) 

  K   DCs ( Kk ...1= ) 

  M   modes of transportation ( Mm ...1= ) 

  T   time periods ( Tt ...1= ) 
Parameters 

  Sij  Distance from supplier i  to ICC j  in miles 
  Tjk  Distance from ICC j  to DC k  in miles 

Uij  Supplier i  to ICC j  transportation cost in $/pound/mile 
  Vjkm  ICC j  to DC k  transportation cost by transportation mode m  in $/pound/mile 



  Njt  Number of dock doors at ICC j  in time period t  

  n  Number of ICCs (i.e., Jn = ) 

  Cjt  Capacity per dock door in ICC j  in time period t  in pounds/door 
  Dikt  Demand requested from supplier i  by DC k  in period t  in pounds 
  Ait  Supply that is available from supplier i  in period t  in pounds 
  Mojt  Cost of opening ICC j  in time period t  
  Mc  Cost of closing an ICC 
  Bj  Initial status of ICC j ; 1=jB  if ICC j  is initially open; 0=jB  otherwise 
  Trlbs  Truck capacity in pounds 
  Ralbs  Rail capacity in pounds 
  Mdemand  Minimum required demand required to keep an ICC open 

Variables 
  Vojt  1=jtVo  when ICC j  opens in period t ; 0=jtVo  otherwise 

  Vcjt  1=jtVc  when ICC j  closes in period t ; 0=jtVc  otherwise 
  Oct  Total opening and closing cost of ICCs in period t  
  Tct  Total transportation cost of ICCs in period t  

ijkmtX  Pounds of demand shipped from supplier i  through ICC j  to DC k  by 
transportation mode m  in time period t  

jktY   1=jktY  if ICC j  services DC k  in time period t ; 0=jktY  otherwise 

jtZ   1=jtZ  if ICC j  is open in time period t ; 0=jtZ  otherwise 
 
The model’s objective function attempts to minimize the total transportation cost and the total cost of opening and 
closing ICCs across all time periods: 
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Constraints (2) and (3) calculate the total transportation cost and the total cost of opening and closing ICCs in period 
t , respectively.  Care must be taken to ensure that ICCs are not overloaded: 
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However, demand at each DC must be met in every time period: 
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Truck (Constraints 6) and rail (Constraints 7) shipments must not exceed the corresponding vehicles payload 
capacity in any time period: 
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As the company does not wish to split a given DC’s demand across multiple suppliers (Constraints 8), we must 
make sure that the selected supplier has at least the total pounds demanded from the DC available in the 
corresponding time period (Constraints 9): 
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Obviously, any DC’s demand should only be assigned to an open ICC: 
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Constraints (11) through (14) are intermediate constraints used to ensure that the cost of opening and closing ICCs is 
calculated appropriately: 
 1,  =∈∀−≥ tJjBZVo jjtjt  (11) 

 1,  =∈∀−≥ tJjBZVc jjtjt  (12) 

 1,  1 >∈∀−≥ − tJjZZVo jtjtjt  (13) 

 1,  1 >∈∀−≥ − tJjZZVc jtjtjt  (14) 
 
Finally, an ICC is only allowed to remain open if a minimum amount of demand flows through it: 
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4. Verifying the Model:  An Example Instance 
For the sake of clarity and illustration, let 10=I , 3=J , and 6=K .  The number of dock doors per ICC 

and the capacity associated with each dock door at each ICC 3...1=j  is given for this example distribution 

network instance in Table 1.  Initially, we consider 3=T  time periods, with 60 unique DC demands in total (i.e., 
10 demands per DC) being generated from a discrete uniform distribution over the interval [0, 100] units for time 
period 1=t .  In subsequent periods, this demand is increased by 10% in period 2, followed by a 15% increase over 
period 1 for the period 3 demand. 
 

Table 1.  ICC Information in Example Problem Instance  
ICC Dock Doors Capacity/Dock Door

1 3 1000
2 2 2500
3 1 3000  

 
The optimization model presented in Section 3 above was coded in AMPL, then analyzed using the MIP solver in 
CPLEX v8.1.  After running the example problem instance in CPLEX, we observe the ICC assignments shown in 
Table 2.  For 1=t , the model recommends that ICC #1 be closed, but the other two ICCs (#2 and #3) be open.  
However, as demand increases in the next two time periods under study, model results do vary by time period.  The 
model recommends that ICCs #1 and #2 be open for 2=t , while ICC #3 should be closed during the same time 
period.  Finally, when 3=t , the model suggests that all demand should flow through ICC #1.  Observing these ICC 
opening and closing schedules results in the optimal, minimum cost solution for the example problem instance under 
study. 
 



Table 2.  Assignment of ICCs as Recommended by Optimization Model Output  
Period ICC Z*

1 1 0
1 2 1
1 3 1
2 1 1
2 2 1
2 3 0
3 1 1
3 2 0
3 3 0  

 
Table 3 displays representative model output with respect to transportation model decisions when 2=t .  Table 3 
shows total pounds shipped from which supplier through which ICC to which DC by what mode of transportation 
for each shipment.  The decision variables for the other two time periods show comparable results/trends. 
 

Table 3.  Transportation Decisions Summary for Time Period 2  
Pounds Supplier ICC DC Mode

68 1 1 1 LTL
104 1 1 3 LTL
81 1 1 5 LTL
81 9 1 1 LTL
49 9 1 3 LTL
88 9 1 5 LTL
19 3 1 1 LTL
67 3 1 2 LTL

106 3 1 5 LTL
41 7 1 1 LTL
84 7 1 3 LTL

1370 7 1 5 LTL
96 6 1 1 LTL
67 6 1 4 Rail

104 6 1 4 Rail
40 1 1 4 Rail
44 9 1 4 Rail

404 7 1 4 Rail
27 6 1 6 Rail

104 1 1 6 Truck
38 9 1 6 Truck
92 3 1 6 Truck

107 7 1 6 Truck
19 6 2 4 Truck
35 3 2 2 Truck
30 1 2 2 Truck

2706 9 2 2 Truck
85 3 2 2 Truck
83 7 2 2 Truck
61 6 2 2 Truck  

 
Taking into consideration the high variability of demand, we examine the model’s sensitivity to demand variation 
over time.  As mentioned in the model formulation above, costs are incurred each time an ICC is opened and/or 



closed.  Further, an ICC can remain open only if some minimum amount of demand (e.g., 3,000 pounds) flows 
through it for a single time period.  Preliminary experiments validated the intuition that ICCs frequently oscillate 
between open and closed states under variable demand.  An important part of validating the ICC opening and 
closing components of the model is to meet with company personnel to determine if they wish to restrict to some 
acceptable level the number of ICC openings and/or closings per time period. 
 
5. Conclusions and Future Research 
In this paper, we present a mixed-integer programming model for analyzing the distribution network of a large 
company from a strategic planning perspective.  Using the proposed model, optimal transportation route 
assignments can be made with minimum total cost.  In addition, the status of each ICC in the network can be 
determined in each time period in terms of whether or not it is/should be open for business. 
 
The example problem instance presented in this paper was selected only for illustrative purposes.  An extension of 
the proposed model would be to include real data from the company, and then analyze the entire network 
distribution problem for the company.  In the future, we will also continue to embellish and validate the optimization 
model presented in this paper.  In parallel, the research team will analyze the dynamic ramifications of the 
optimization model’s solution in terms of inventory build-up and required order cycle time via Monte Carlo 
simulation and/or discrete event simulation. 
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