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Abstract 
The goal of this research is to develop a good approximation for the expected wait time in a GI/G/m queue.  We use 
neural networks to close the gap between the output of Whitt’s [6] GI/G/m approximation, and the results obtained 
via simulations of a GI/G/m queue.  Once the neural network has been trained, we will be able to feed in the 
parameters and resulting output of Whitt’s GI/G/m approximation, along with additional information describing the 
arrival and service distributions of the queue, and yield an acceptably accurate approximation for the expected wait 
time in a GI/G/m queue. 
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1  Introduction  
Analysis of large queueing networks, an essential part of logistics modeling and communications network modeling, 
can be a computationally challenging task.  Full-scale simulation is often infeasible especially if the simulation is to 
be embedded within an optimization procedure.  This has prompted research into hybrid techniques combining 
analytical methods and simulation.  These hybrid techniques use approximations to compute the service metrics for 
individual queues in the system, and then simulate the flow of customers among the queues.  This approach relies 
heavily on approximations that adequately model the individual queues and the network of queues within the 
system.  While many closed-form queueing approximations do exist, most rely on simplifying assumptions that can 
render them inappropriate for modeling the complexity found in real-world situations.  Clearly an approximation is 
needed that does not require such simplifying assumptions; the queue in question is the GI/G/m, and there are no 
closed-form, exact analytical solutions for this queue at this time.  This research seeks to satisfy this need by 
combining an existing approximation that is “close” to the GI/G/m, along with induction learning techniques.  We 
use the GI/G/m approximation presented in Whitt [6], along with a neural network that will be trained on Whitt’s 
approximation, other parameters specifying the service and arrival distributions for the queue, as well as a 
simulation model.  Our initial goal for this research is to develop an approximation that shows a significant 
improvement over Whitt’s GI/G/m approximation in terms of absolute relative error.  A secondary goal is to achieve 
an approximation with an average absolute relative error of less than 10%. 

2  Literature Review 
In Whitt’s [6], approximations are presented for the GI/G/m queue.  The model presented has unlimited waiting 
room, m identical parallel servers, and the queue operates on first-come first-served basis.  All service and 
interarrival times are independent, identically distributed random variables with general distributions that are 
specified by their first two moments.  The arrival process is specified by λ and ca

2, which are the arrival rate and the 
squared coefficient of variation of the interarrival time.  The service process is specified by τ and cs

2, which are the 
mean service time and the squared coefficient of variation of service time.  Other assumptions made by Whitt [6] are 
that traffic intensity, ρ, is less than 1, and that mean service time, τ, is normalized equal to 1.  The traffic intensity,  
ρ, is equal to  mλτ .  Whitt [6] focuses on approximations for the expected waiting time of a customer before 
beginning service, or EW.  The formula he presents for EW is: 
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and EW(M/M/m) is the expected waiting time in the standard M/M/m queueing system.  In the preceding equations, 
ψ and φ denote functions of m and ρ that can be found in Whitt [6].  Measures of interest other than expected 
waiting time, such as the number of busy servers (E[B]), the expected queue length (E[Q]), the expected number of 
customers in the system at any given time (E[N]), and the expected time in system (E[T]), can be found through 
analytical relationships between these measures and the expected waiting time.   
 
In order to measure the accuracy of the approximations, Whitt [6] uses absolute difference and relative percentage 
error as performance metrics.  As long as one of those values is below a designated threshold, Whitt contends that 
the approximation is accurate.  He defines an adjusted measure of error (AME) to combine the effects of the two 
performance measures: 
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where A is a constant determined by the user that weights the importance of the two performance metrics.  Whitt 
does not present an exact value A for use in all calculations.  By evaluating the approximations based on the 
performance metrics outlined above, Whitt [6] is able to draw the conclusion that the approximations work best 
when the probability distributions for service time and interarrival time are not too irregular.  The approximations 
are less accurate when ca

2 and cs
2 are large.  The approximations overestimate the actual values both when m is large 

and ρ is small, however, the approximation works better than earlier results when traffic is heavy (ρ is large).  Whitt 
compared the approximation for different queueing models.  He concluded that the approximations work well for 
GI/M/m queues when 0< ca

2<1, as in an E4/M/m model.  It also performs well for E2/E2/m models but is not always 
better than earlier approximations for G/H2/m models.  He identifies room for improvement in the approximations 
when ca

2>1> cs
2 and also when ca

2<1.   
 
Whitt’s approximation involves characterizing the arrival process and the service process of the queue by the first 
two moments of the distributions.  Approximations are then developed based on , 
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.  This set of input parameters involves only second moment information plus the number of 
servers so that the approximation is not a full specification of the queueing system.  It should be clear that the 
mapping ability is limited for approximations based upon only the first two moments.  There are a wide variety of 
more complicated approximations, but our point here is that analytical models can be used as b

 the parameters

uilding blocks.   
 
Another way to build an approximating function for the expected waiting time would be to fit an induction model 
via some technique (least squares, non-linear regression, neural networks, GMDH, etc.) directly to the output of the 
system over a wide range of input parameters and distributions.  In this case, we let ( ) ( )kk yxyx

rr
K

rr
,,,, 11  be 

input/output pairs from the system where  represents the kth input and kx
r

ky
r

 the kth output and ( )kk xfy
rr

= .  Let us 
consider the response variable  univariate for simplicity of discussion, but these techniques are not limited to that 
case.  While it is possible to build an induction model based on observations of the actual system, it will be 
impractical due to the large amount of data required; however, an induction model could be built based on 
input/output pairs from a detailed simulation.  One can think of this approach as a form of simulation meta-
modeling, see Friedman [1] for example.  Other similar approaches have been taken by 

ky

Kimura [2] where 
interpolations between analytical models are used to build new approximations.   
 
The work closest related to ours is that of Shin, Sargent, and Goel [4].  Shin, Sargent, and Goel [4] present a 
systematic approach to queueing approximation via meta-modeling using Gaussian radial basis functions, which are 
specialized feed-forward networks having 3 layers that map an input space onto a desired output space, and use 
Gaussian basis functions.   They use the SG algorithm to determine the number of basis functions, the basis function 
centers), and the basis function weights.  For a detailed explanation of the SG algorithm, we refer the reader to Shin 
and Goel [3,4].  An additional parameter specifies the coverage of the input space, with 100% coverage requiring 

  



one basis function for every input value, permitting direct control over the model complexity.  They demonstrate 
their approach on the M/M/1 queue, with a data set created by fixing the arrival rate and varying the service rate.  
They vary the basis function widths to create a variety of different meta-models for which they compute both the 
fitting and test mean squared errors (MSE) defined by the equation: 
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They then show how each of these meta-models perform against the known closed-form equation for the expected 
wait time for the M/M/1 queue.  Unlike the approach taken by Shin, Sargent, and Goel [4], we use a custom neural 
network created by off-the-shelf software and tailored to our problem specifications.  In addition, our approach uses 
back propagation instead of the SG algorithm to set the weights.  When evaluating our approximation, we consider 
only test data sets, not fitting data sets, to get an idea of how valuable our approximation is in the real world.  To that 
end, we consider average absolute relative error, instead of mean square error (which is an un-scaled error metric) 
because it is more relevant to real-world applications.  Finally we present an approximation for the GI/G/m for 
which there is no closed-form analytical model to test against, requiring simulation to obtain the “true” values for 
the expected wait time in queue.  To reduce the time required to train our neural network to approximate the GI/G/m 
queue, we utilized Whitt’s GI/G/m approximation, as our starting point. We train our neural network on 

 as well as the output from Whitt’s approximation and an exact simulation model.   sa

 
Our research is intended as the first step in developing hybrid analytical/simulation techniques that are robust 
enough for general use in the real world.  In his research on modeling queueing networks, Whitt [5] presented the 
Queueing Network Analyzer, or QNA, software.  The purpose of QNA is to approximate congestion measures for a 
network of queues.  The software is intended to be used on non-Markov networks, so arrival processes do not have 
to be Poisson and service times do not have to be exponential.  He assumes that each node in the network is 
stochastically independent.  The arrival process to each node is partially characterized by a few parameters, which 
are represented by linear equations.  The system of linear equations is solved to determine the internal flow 
parameters.  Once these parameters have been defined and a routing matrix has been provided, each of the nodes is 
analyzed separately.  Calculus transforms the parameters that define each queue and node to represent operations 
such as merging, splitting, and departure.  Currently QNA uses just the first two moments of the arrival and service 
distributions for each queue.  Future research will involve expansion of QNA to include higher moment information 
so it could be used with our neural network approximation.  Our ultimate goal is to integrate the ideas of QNA, 
Neural Networks, and hybrid techniques to reduce the computational requirements of large-scale simulations of 
these systems. 

3  Methodology 
To perform the neural network fits we needed a set of test cases for which the wait time in queue was known.  To 
generate these test cases we randomly select one of the six following distributions (independently) for both the 
arrival and service distributions: (exponential, uniform, triangular, gamma, Weibull, and lognormal).  Once the 
distributions had been selected, values for the distribution parameters were selected based on the information in the 
table below:  

Table 1:  Distribution Parameters 

Distribution Parameters 
Exponential λ ~uniform(1,25) 
Uniform min~uniform(1,25) max~uniform(min,25) 
Triangular min~uniform(1,25) mode~uniform(1,25) max~uniform(1,25) 
Gamma α ~uniform(1,5) β ~uniform(1,5) 
Weibull α ~uniform(1,25) β ~uniform(1,25) 
Lognormal E[X]~uniform(1,25) ][XV logstdev~uniform(1,25) 

 
These parameters were used to compute λ , µ , and the offered load for the queue.  The offered load and ρ (a 
randomly generated number from 0.05 to 0.95 inclusive) were then used to compute the required number of servers. 

  



Table 2:  Test-case Parameter Statistics 

 m λ  µ  2
ac 2

sc  
Mean 1.99721 0.111011 0.133516 2.15944 2.56615 
Stdev 1.67144 0.101712 0.119208 5.53683 6.1999 
Sample size 3225 3225 3225 3225 3225 
Minimum 1 0.04 0.04 0 0 
Q1 1 0.05 0.06 0.22 0.09 
Median 1 0.07 0.09 1 0.87 
Q3 2 0.13 0.16 1 1 
Maximum 27 0.98 0.97 49.07 49.59 

 

Table 3:  Frequency of Distributions in Training Data Set 

Distribution Arrival (%) Service (%) 
Exponential 32.217 24.434 
Uniform 7.504 9.3023 
Triangular 8.4341 9.0233 
Gamma 14.7597 16.031 
Weibull 7.1938 9.5504 
Lognormal 28.91 31.6899 

 
For simulation, we used Arena 7.01 from Rockwell Software.  The model used VBA to import the table containing 
the test cases created in Access.  At the start of each replication, a new test case was loaded into the model and run, 
with the resulting wait time in queue (and other related statistics) automatically written back out to the database by 
the VBA code in the Arena model.  For the neural network fitting process we used NeuroSolutions 4 from 
NeuroDimension.  First we selected the desired use of the neural network: approximating a function.  We used the 
file containing the test cases as the input to the neural network, and selected the inputs and the outputs for the fitting 
process.  Next we selected the neural network settings.  These included neural network complexity ranging from 
Low to High (we selected high), and data set aside for cross-validation (20%).  The software automatically 
generated a neural network for us with the following topology (back propagation not shown): 

 

Figure 1:  Neural Network Topology 

A hyperbolic transfer function was used in the hidden layer, and back propagation was used to train the network.  To 
select the best set of inputs for training the neural network, we started with: ( )s

q
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and  are the expected waiting time values from Whitt’s approximation and from the simulation respectively.  We 
then added the second, third, and forth moments and with the skew of the arrival and service distributions as inputs.  
We trained the network for 10,000 epochs (internal software time steps).  We then tested the neural network on a file 
containing a new set of test cases.  The testing output file showed the desired wait time in queue side-by-side with 
the wait time in queue from the neural network.  We  computed the following error metrics for both the neural 
network and Whitt’s GI/G/m approximation for each test case: 

s
qW

Table 4: Error Metric Definitions 

Error Metric Definition 
Error a
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Absolute Error a
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s

qW is the expected wait time in queue (WQ) as computed by the Arena simulation.  W is the output of the 
approximation  under evaluation.  We then computed the averages of these metrics so that we could compare our 
approximation to Whitt’s GI/G/m approximation.  We selected Absolute Relative Error as the most logical criterion 
for this comparison.  

a
q

4  Conclusions 
The table below shows a side-by-side comparison of our neural network-based approximation with Whitt’s GI/G/m 
approximation for the test cases run. 
 

Table 5: Summary of Approximation Error Metrics 

 Whitt Approximation Neural Network Approximation 
 Error Absolute 

Error 
Relative 
Error 

Absolute 
Relative 
Error 

Error Absolute 
Error 

Relative 
Error 

Absolute 
Relative 
Error 

Average -1.16990 1.76220 -1.6E-01 0.195159 0.24516 1.07652 0.036738 0.166515 
Stdev 6.62107 6.48855 0.266897 0.240814 6.16899 6.07925 0.392490 0.357299 
Sample 
size 

3185 3185 3185 3185 3185 3185 3185 3185 

Minimum -134.550 0 -1.87655 0 -23.066 0 -4.92096 0.00003 
Q1 -1.440 0.160 -0.26930 0.03352 -0.361 0.192 -0.07852 0.03666 
Median -0.350 0.620 -0.06540 0.09513 0.055 0.478 0.01083 0.08321 
Q3 0.020 1.635 0.00581 0.27948 0.574 1.006 0.08679 0.16219 
Maximum 233.660 233.660 0.64036 1.87655 282.597 282.597 6.95870 6.95870 
 
As the table shows, our approximation outperformed Whitt’s GI/G/m approximation with an average absolute 
relative error of 16.65% versus 19.52%.  Below are box-plots comparing the error and absolute relative error of our 
approximation and Whitt’s GI/G/m approximation:  
 

  



Figure 2:  Error Boxplot 

 
Figure 3:  Absolute Relative Error Boxplot 

 
 
Notice that in the plots for both error and absolute error (Figure 2), our approximation error is clustered tighter 
around zero than Whitt’s GI/G/m approximation error, confirming our conclusion.  The large number of outliers in 
Figure 3, in contrast to the tightness in Figure 2, suggests that relative and absolute relative error do not provide 
meaningful results when the expected wait times in queue become very small.  In the future we plan to use the 
expected time in the system which has consistently larger values (bounded by the mean service time) and thus 
should prove to be a better overall metric.  We are investigating the worst cases to improve performance for those 
cases.  These results are preliminary and our research in this area is ongoing in an effort to meet our secondary goal 
of 10% or lower absolute relative error; however, the method we presented shows promise by demonstrating a better 
general-case approximation than the GI/G/m presented in Whitt [6].  While our approximation outperformed the 
GI/G/m for the test cases run, there are a number of directions in which the research presented here could be 
extended to achieve a greater reduction in error.   These include: considering different network topologies; running 
multiple simulation replications per test case to achieve better “true” values of expected wait times; forcing 
simulation replications to run until a desired wait time half-width is reached; presenting bounds to the neural 
network as inputs; identifying outliers and treating them separately; applying a bias correction to the neural network 
output. 
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