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ABSTRACT

We consider the estimation of the expected sojourn time in a Markov renewal
process under the data condition that only the counts of the exits from the states
are available for fixed intervals of time. For analytical and illustrative purposes we
concentrate on the two-state process case. We present least squares and method of
moments estimators and compare their statistical properties both analytically and
empirically. We also present modified estimators with improved properties based
upon an overlapping interval sampling strategy. The major results indicate that the
least squares estimator is biased in general with the bias depending on the size of
the sampling interval and the first two moments of the sojourn time distribution
function. The bias becomes negligible as the size of the sampling interval increases.
Analytical and empirical results indicate that the method of moments estimator
is less sensitive to the size of the sampling interval and has slightly better mean

squared error properties than the least squares estimator.
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1 INTRODUCTION

Let (X,T)={X,,T,,n=0,1,...} be a Markov renewal process, see for ex-
ample Cinlar(1975), where we define X, to be the state of the process just
after the n'™ event and T, to be the time of the n'” event. The process
{X,} is a finite state Markov chain and the inter-event time or sojourn time,
Y, = T,4+1 — T,, has a distribution dependent on X,,. The purpose of this
paper is to present estimators for the means of the sojourn time distribution
functions under a strict data availability condition.

To motivate the data availability condition, consider a server processing
heterogeneous customers. The objective is to estimate the mean service times
for each customer type under a data availability condition commonly encoun-
tered in shop floor systems. Specifically, we can observe the total service time
and production quantities by product type during fixed-length time intervals,
such as shifts. More generally, we assume that we can only observe the state
exiting counting processes associated with the MRP over fixed intervals of
time. We can not observe the actual sojourn times nor can we observe state
transitional count data, i.e. specific data concerning the exact times and types
of state transitions is unavailable.

Moore and Pyke(1968) examined estimators of the transition distributions
of a MRP based on maximum likelihood estimation(MLE). In Moore and
Pyke(1968), sojourn times and transitional count data are observable; however,
in our case these data are unavailable so that a straight forward MLLE approach
is not possible. Markov renewal processes and their statistical estimation
are also discussed in Karr(1986). The nonparametric maximum likelihood
estimators discussed in Karr(1986) do not apply here because of our data
availability constraint. Instead, we derive and evaluate estimators based on
least squares(LS) and on the method of matching moments(MOM).

The rest of this paper is structured as follows. First, we give the application
which motivated our research. In Section 2, we present the definition and mo-
ment solutions for the exiting counting processes associated with the Markov
renewal process. In Section 3, we present our basic least squares estimator,
and in Section 4 we present a competing estimator based upon the method of

matching moments. In Section 5, we evaluate empirically the performance of



the estimators via simulation, and in Section 6 we present a modified version of
the estimators with improved performance. Finally, we summarize our results

and discuss future research.

2 DEFINITION AND MOMENT SOLUTIONS

We begin this section with an application which motivates the estimation
problem examined in this paper. We then define the state-exiting counting

processes and present solutions for the moments of the counting processes.

2.1 Motivating Application

This research evolved from a capacity planning project where there was a
need to accurately estimate service times in multi-server, multi-class customer
queueing systems. The major constraint associated with the project was that
there was to be minimal effort expended in data collection. Bar code scanning
stations between work centers having multiple servers allow for the automatic
collection of customer arrival and departure information, but not the amount
of time spent in service for each customer. These data do allow for calculation
of total service time exclusive of idle time and for production counts. We
refer the reader to Rossetti(1992) for more details of the system configuration.
In order to develop and analyze estimators for the more general multi-server,
multi-class customer queueing system, we decided to approximate the system
behavior with a single-server system which has a underlying Markov renewal
process structure where time is service time exclusive of idle time.

Assume that we have a server which processes heterogeneous customers,
and that the selection of the next customer occurs according to a Markov chain.
The server spends a random amount of time servicing the customer where the
service time distribution depends only upon the type of customer selected.
If we define the state of the process as the type of customer the server is
currently serving, then the sojourn time distributions for the states of the MRP
correspond to the service time distribution functions for the customers. In the
next section, we give a precise definition for the exiting counting processes

described in this example.



2.2 Exiting Counting Process

We begin with a definition and some notation to precisely define the counting

process for the number of times a state is exited for the MRP examined in this

paper.

Definition 1 Let {X,,n > 0} be a Markov Chain with a finite state space,
S ={1,2,....,K}. Let {Y,,n >0} be a sequence of non-negative random
variables where n > 1 and Yo = 0. Let T, = Yo+ Y1 +---+Y,, n>0. Let
(X, T)={X,,T,;n >0} be a Markov renewal process with the property

Pr{Xps1 = j, Tosr = To <t | Xoveo . Xy Toe o Toy = Pr{Tpyy — T, <t ] X, }

Let {X(t),t >0} be the semi-Markov process engendered by (X,T), where
{X(t),t >0}, is defined as X(t) = X,, if and only if T, <t < Toy1. The
random variables T, and Y, are called the n'™™ transition epoch and the n'"
sojourn time of the process and Fy(t) = Pr{Y, <t| X,_1 =1} is called the
sojourn time distribution function for state 1. Define 0; and &? to be the mean
and the variance of the nth sojourn time, Y,, whose distribution function is
Fi(t). Let p;; = Pr{X, =j | Xu—1 =i} be the Markov chain single step tran-
sition probabilities. Let N(t) = max{n:T, <t}, so that N(t) is the num-
ber of transition epochs in (0,t]. Let N;(t) = number of times X,, = j for
0<n<N()—1 with N;j(t) =0 for all j if N(t) = 0. Thus N;(t) represents
the number of times state j has been exited in the interval (0,t]. We call the
N;(t) the Exiting Counting Processes(ECP’s) associated with the MRP.

~—

In terms of notation, our goal is to estimate the means, 8;, of the distribu-
tion functions, Fi(t), from only the count of the number of times each state
has been exited, N;(t). The transition probabilities are also unknown, but we
will show that they are not needed in estimating the mean sojourn times. We
develop a least squares estimator and an estimator based on the method of
moments. In order to analyze the statistical properties of these estimators, we
need expressions for the moments of the ECP which we present in the following

section.



2.3 ECP Moment Solutions

In this section, we present expressions for the unconditional equilibrium mo-
ments of the ECP associated with the MRP. In general, the moment expres-
sions can be quite complicated. The following Theorem establishes the condi-
tional moments of the ECP and shows the relationship between the ECP re-
sults and the state entering counting process. We denote the Laplace-Stieltjes
transform of a real-valued function G(-),t > 0, as G(s) = [ e *'dG(t) and
G(-) = [Gy(+)] as a matrix of functions. Also, we let diag(dy,...,d,) rep-
resent a matrix with d;,2 = 1,...,n on the diagonal and zeros elsewhere,

I=diag(l,...,1), and G? = diag(G1, ..., Gnn)-

Theorem 1 Let L;(t) = number of times state j is entered or the number
of times X, = j for 0 < n < N(t). Define Q;;(t) = pi; Fi(t). Let H;;(t) =
BLi(1) | X(0) = i], Myy(t) = E[N;(1) | X(0) = i}, Wi(t) = E[N2(1) | X(0) =],
and hiry(t) = E[N;(1)Np(t) | X(0) = 1], where higry(t) = higj(t) for j # k,

and B(t) = diag (Fi(1), ..., Fi(t)). Let RGO (1) = [hyiy (1), hagiay (1), - - e (1)]

and let rﬁ(jk)(t) be a n X 1 vector with elements

{0 ifi1# 7 and 1 # k

-~

M(t) ifi=

Then

B = W) B ()@

The proof is outlined in the appendix. For a more detailed discussion of
results relating to the moment solutions of the ECP, we refer the reader to
Rossetti and Clark(1994). In order to be able to utilize moment expressions
in the analysis of estimators for #;, we develop asymptotic expansions for the
moments of the ECP in terms of the moments of F;(t) and the transition

probabilities of the embedded Markov chain. Throughout the remainder of



the paper, we assume that the embedded Markov chain has two-states and
is ergodic, i.e. 0 < p; < 1, for i= 1,2. We do this for two reasons. First,
the reduction to two states allows for easier analytical investigation which
highlights the essential properties of the estimators. Second, the estimation
method is not limited to two states, so that the methodology can be applied in
the larger state space case. We discuss how the larger state space case might
be handled in our conclusions. The following result presents the equilibrium

moment solutions necessary for analysis in this paper.

Result 1 Let (X,T) = {X,,T,;n > 0} be a Markov renewal process as de-
fined in Definition 1 with state space, S = {1,2} and 0 < p; < 1,1 =1,2. As-
sume that the processes, N;(t), have existed in the distant past and that we start
observing the process at a randomly selected point in time which we define to be
t = 0. We denote this process as the equilibrium process. Furthermore, suppose
that the Markov chain {X,,n > 0}, associated with {X(t),t > 0} is ergodic.
Let a;, o2 be the mean and variance of the recurrence time for states i = 1,2

and 7; = limpeo Pr{X, = j}. Then E[Ni(t)] =t/on, E[Ns(t)] =t/ and

E[NI()] = Bi+ Bat+ Bat?/2 + o(1) (5)
E[N;(t)] = Di+ Dat + Dst*/2+ o(1) (6)
E[N{(HNy(1)] = Ay + Aot + Ast?/2 + o(1) (7)

where By = o}/a}, By =2/a}, Dy =03/a3, Dy =2/a2, A3 =2/ajay and

T2 2 2

with 0 = 7T101 + 7T202, 6 =2 P11 — P22, and 52 = 7T1(S% + WQ(S%.

The proof utilizes the results of Theorem 1 to develop the equilibrium exit-
ing processes and then asymptotically expands the moment’s Laplace-Stieltjes
transforms. Since this process involves considerable algebraic manipulations,
we refer the interested reader to Rossetti and Clark(1994) for the details. The
coefficients By, Dy, and A, are complicated functions of the p;; and the first
three moments of F;(¢) and are given in Rossetti and Clark(1994). We will
utilize the following approximation in our analysis which involves dropping the
coefficients By, Dy, and A; since they would be small in comparison to the

other terms for large t.



Definition 2 The moments E[N}(t)], E[NZ(t)], and E[Ny(t)Ny(t)] have the
Jorm ko + kit + kot? /2 + o(1). We define the approzimation by dropping the ko
and o(1) terms so that

E[N}(1)] = Bat+ Bst?/2 (9)
E[N(t)] = Dt + Dst*/2 (10)
B[N () Ny(t)] = At + Azt?/2 (11)

In Rossetti and Clark(1994), we analytically and empirically evaluate the
above approximation and one other approximation in order to assess their
accuracy. For the case of Fy(t) = 1 —e™"/% i = 1,2, we have the following

result for the approximation given in Definition 2.

Result 2 The moments E[N{(t)], E[N3(t)], and E[Ny(t)Ny(t)] have the form
ko(l — e‘”t) + klt + k2t2/2 Let

AE(-) = |true — approzimation| (12)
ARF() = |true — approzimation| (13)
|true|

For fized parameters AF(-) has the following form

AR() = [ko(1 = e™)]

so that
EINFO] | EINF ()] | EIN:(£) Na(t)]
Tmoie ARG | TRl | Tho Fo
Timy_or AB() 0 0 0
T 400 ARE() | 0 0 0
lim ot AREC) [ 1 =] [ 13 +00

and for fized t, AE(:) and ARE(:) may be arbitrarily large depending on the

choice of parameters.

The proofs of AE(-) for (¢t — 0%, and ¢ — +00) follow immediately from the
functional form of AE(-). The proofs of ARE(:) for ({ — 4o00) and (t — 0%)
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follow from an application of .”Hospital’s rule. The result for fixed ¢ follows by
noting that (kg — o0) as (p11 — 1 and paz — 1). Plots of the error functions
indicated that the error drops off quickly as ¢ gets large.

To examine the average behavior of the approximation, we randomly se-
lected n = 10000 parameter values according to a uniform distribution such
that the range of parameters was 0 < py1,p22 < land 1 < 6,05 < 100 and then
computed ARE(-). Table 1 reports the statistics for sampled absolute relative
errors for t = 120,480. The results indicate that in terms of absolute relative
error the approximation is quite good over a reasonable range of parameters
when ¢ is large compared to the parameters. The form of the approximation
also allows for easier analysis. The next sections will utilize the approximation

in analyzing the statistical properties of the proposed estimators.

Table 1: Sample Results for ARE(+).

i ARF(ENZ(A)]) [ ARE(E[NZ(A]) [ ARE(E [N () Na(0)])
120 x 0.0065 0.0081 0.1457
s?/n 1.61 x107¢ 3.91 x107° 0.0105
n 10000 10000 10000
min 1.09 x1078 7.4 x107° 1.03 x1078
max 11.44 14.15 972.19
480 x 0.001 0.001 0.01
s?/n 9.0 x1078 2.3 x1077 5.03 x107°
n 10000 10000 10000
min 7.0 x10710 5.0 x10710 6.0 x10710
max 2.69 3.59 65.92

where z is the sample average and s? is the sample variance.

3 LEAST SQUARES ESTIMATOR

In this section, we present the least squares estimator for the means of the
sojourn time distribution functions. Again, we limit our analysis to the equi-
librium version of a two state MRP with 0 < p; < 1, for i= 1,2. We assume
that we can observe the MRP for a predetermined length of time which can be

divided into intervals of fixed length, 7, in which only the count of the number



of times each state was exited is given. Consider the following linear model

K
K:ZXika—l—q, (t=1,...,n) (14)

k=1
where K = 2 is the number of states, n is the number of fixed length intervals,
Y, = 7 is the amount of time in interval ¢, X;; is the number of times state
k is exited during interval ¢, 8} is the mean of the sojourn time distribution
function, and ¢; is the model error term. From least squares theory, we have

the following.

Estimator 1 Let él and éz be the least squares estimators of 6, and 0y for
the model given by Equation (14). Denote the equilibrium process for the ECP
by {N;(t)}. Let

Xip = Ne((i)r) = NE((i = 1)r), i =1,2,....n (15)

where T is a fired interval size. Let X1, X, 7(12), 7(22), and XX, be the

sample moments. Then,

0, = — )) (16)

N

02 -

(17)

The estimator follows immediately from least squares theory and substi-
tution of the sample moments. Note that since E[X;] = 7/ap and op =
(25‘:1 7T]‘(9]‘) /7 the expectation of Equation (14) yields E[¢;] = 0. We note
that in practice, 6 and 0, could be negative and rejected as viable estimates;
however, we do not address that problem in this paper. The following theorem

states the convergence property of the least squares estimators.

Theorem 2 et él and éz be the least squares estimators of 01 and 65. Assume
that { X1 =1,2,...,} is ergodic with E[X;] < oo and E[X}] < oo then as
n — oo, and provided E[N2(7)]E[N2(7)] — (E[Ny(7)Nao(7)])* # 0, we have

A 1/\
0, & 00



_ T(EBEMNE@IENG ()] = B[N (1) No(r)] E[Ns(7)]) (18)
E[NP(r)] BN (7)] = (E[N: (7) Na(7)])*

_ T (BN(D)E[NF(7)] = B[N (1) Na(r)] B [Ni(7)]) (19)
E[NP(r)] BN (7)] = (E[N: (7) Na(7)])*

The proof appears in the appendix. By ergodic, we mean that there exists a
finite constant to which the sample mean converges as the sample size increases
to infinity; see for example Karlin and Taylor(1975, pg. 487-488). We note
that the éf are functions of the first, second, and covariance moments for the

ECP of the MRP.

3.1 Approximations for Bias, Variance, and MSE

In this section, we give approximations for the bias, variance, and mean
squared error of the least squares estimator in terms of the parameters of

the MRP using the approximations given in Definition 2.

Corollary 1 Let Bias {éz} =E {éz} — 0;. Given Result 1, Theorem 2, and
Definition 2 we have,

Bias [0;] = 0, (1 ;cBC) (20)

where B, =1+ b./7 and b, = §%/9.

The proof appears in the appendix. This result indicates that the least squares
estimator is biased in general with the approximate bias dependent on 7, §2,
and §. We note that as 7 increases the bias should improve since the biasing
constant, B., approaches one.

Regression in the standard linear model assumes that the regressor vari-
ables are non-random, the error term ¢; has mean zero and constant variance
and that ¢; and ¢; are uncorrelated, see for example Graybill(1976, pg. 171;
216). In our case the regressor variables, X;;, are random variables and the
linear relationship is postulated between the expected values of the random
variables involved in the model. The Y; are constants and the errors will
be correlated in general. The following results are offered as approximations
for the behavior of the estimators. We shall also utilize the relationships to

motivate a sampling method which improves the quality of the estimates.

9



Result 3 Let MSER be the mean squared error of the residuals about the re-
gression based on standard linear model regression assumptions. Given Re-
sult 1 and Definition 2, we have

o nt? b.
MSEgR = 21
SEr n—2 (bc—l—r) (21)

The proof appears in the appendix.

Result 4 Let 0, and 0y be the least squares estimators. Given Result 3, Defi-

nition 2 and assuming standard linear model regression assumptions, we have

) ) () 55) +ats)
Var [0,) = (TZQT) (bcbiT) ((%0) (265) + bfir) (23)

where T = nt is the total observation time.

Var [0

The proof appears in the appendix.

Remark 1 If (6] — 0 and 65 — 0) then b. — 0 and B. — 1 so that é% wpLox
and 03 B 0. Also, if b, — 0 then Var [6] "™ 0 and Var [f,] ™5™ 0.
Thus, the bias and variance properties of the least squares estimators should

improve as the sojourn distribution functions become more deterministic.

Remark 2 Let ¢; = §;/0; be the coefficient of variation for the sojourn time
distribution function for state 7. Suppose, 0 < ¢ < k;, i = 1,2 where k; is a

constant, then

110y + 120,

T

1§Bc§1—|—( )max(kl,kz)

where v; = m;0;/0. So that for large 7, B. can be made close to one, and for
small coefficients of variation B. is close to one. Thus, the bias should improve

as T increases and as c; decreases.

Remark 3 The approximation for the estimate of the variance of 0; increases
as m; decreases due to the 7; term in the denominator of Equations 22 and 23.

This makes intuitive sense since if m; decreases there is less chance that the

10



state will be exited and thus less data available for estimating that state’s mean
sojourn time. Also, the approximation for the estimate of the variance of 0;
increases as 2— 3 = py1+p9o approaches zero. We note that as 2— 3 approaches
zero the two state Markov renewal process behaves like an alternating renewal

pProcess.

4 METHOD OF MOMENTS ESTIMATOR

In this section, we present an estimator for the mean of the sojourn time distri-
bution function based upon the method of matching moments. The difficulty
with applying the method of moments to the two state problem is that the
number of parameters to estimate is six, (0, 62, 67, 93, p11, and paz), while we
only have first moment, second moment, and covariance moment information,
(four independent equations). In order to reduce the complexity of the equa-
tions, we will utilize the approximations given in Definition 2 and combine
unneeded terms to form nuisance parameters. The next result presents the

method of moments estimator.

Estimator 2 let 51 and 52 be the method of moments estimators. Given
Result 1 and Definition 2, we have

: r ((F)(F) - (FiXa)(X)

01 == — —(2 —_ — — —(2 (24)
(X1)2(XY)) = 2(X)(X) (K X2) + (X)X

N (R = (%) (%)

02 - — — —_ — — —(2 (25)
(X1)2(X5)) = 2(X)(Xa) (K X%2) + (X)X

provided (71)2(7(2
The proof appears in the appendix.

Corollary 2 Let 6, and 0, be the method of moments estimators. Assume that
{Xir,i=1,2,...,}, as defined in Equation (15), is ergodic with E[X;] < oo
and E[X2] < oo then as n — oo, we have

51 % g? :01 (26)
ég % é? :02 (27)

11



The proof appears in the appendix.

Remark 4 Corollary 2 states that the asymptotic values of the method of mo-
ments estimators are approzimately equal to the true values of the parameters,
but note that we need 7 large enough to make the error in the approximations
negligible. Note also that the p;; became nuisance parameters and are not

needed in the estimation of the sojourn times.

We note that the N;(7) are asymptotically normal, see for example Heyman
and Sobel (1982, pg. 114) and Taga (1963, pg. 8). Suppose that Ny(7) and Na(7)
are bivariate normal, then the sample moments, X, X, 7(12), 7(22), and X7 X,
are maximum likelihood estimators(MLE’s) of the corresponding moment pa-
rameters of the bivariate normal distribution; see for example Rao(1973), pg.
447). Thus, since the method of moments estimator is a function of the mo-
ments for V;(7), the MOM estimator is an asymptotic function of MLE’s and
thus the MOM is asymptotically a MLE.

5 EMPIRICAL EVALUATION OF ESTIMATORS

In this section, we present an empirical comparison of the least squares es-
timator and the method of moments estimator. The cases we examined are
given in Table 2. The comparison is given in terms of estimates for the bias,
variance, and mean squared error of the estimators. In all cases, we simulated
T = 50,000 minutes of the MRP. The observation period, T', was divided
into fixed intervals of size 7 and the number of times each state was exited
during each interval was collected. The estimates were then computed using
the equations given in Estimators 1 and 2. Each simulation was replicated r
times to produce r estimates of the estimators. We call these r replications,
micro-replications. Each micro-replication provides an estimate of the bias,
variance, and mean squared error of the estimators. Each of the r replications
were replicated R times to provide a sampling distribution for the estimates of
bias, variance, and mean squared error. In the tables  represents the average
and s? represents the unbiased sample variance of the estimates of B/i;s, \72;1’,
and MSE from the R macro-replications. The simulations were performed us-
ing Simscript I1.5. The transition to the initial state j was selected according

to the steady state probability of transition ;.

12



Table 2: Experimental Test Cases

Fz(t) =1- e—t/é’,'

0, =20, 0, =10
Case | pi1 | pa2
1 0.1 0.1
2 0.9 0.9
3 0.9 0.1
4 0.1 0.9

The results of the experimental test cases are given in Tables 3 and 4. The
results indicate that the bias associated with the least squares estimator can be
quite severe for small values of 7. The method of moments estimator suffers a
smaller increase in bias as 7 decreases. The variance of both estimators can be
significant enough to make estimation doubtful as in Case 1 Table 3. Increasing
the number of intervals while decreasing their length reduces the variance of
the estimators; however, the bias is significantly increased for the least squares
estimator, especially for 0. In terms of MS\E, in Table 3 the estimators are
competitive while for Table 4 the method of moments estimator appears to
have better mean squared error properties. Overall, the method of moments

estimator appears more robust to the selection of the parameter 7.

13



Table 3: Empirical Results n = 100, 7 = 500

R:51,r:70,91:20,92:10

LS MOM

‘Case‘ 0, 0, 51 52
1 5 T | 18.9198 | 10.1367 | 19.539 | 10.4686
s2 | 0.306 0.301 0.325 0.321

Bias | © | -1.0802 | 0.1367 | -0.4610 | 0.4686

s2 | 0.306 0.301 0.325 0.321

Var | © | 19.631 | 19.4703 | 20.9381 | 20.7725

s2 | 10.710 | 10.121 | 12.135 | 11.482

MSE | * | 21.0982 | 19.7837 | 21.4697 | 21.3069

s2 | 14.589 | 10.793 | 13.805 | 13.266

2 5 T | 19.2993 | 9.7572 | 19.9303 | 10.0762
s2 | 0.009 0.005 0.010 0.005

Bias | © | -0.7007 | -0.2428 | -0.0697 | 0.0762

s2 | 0.009 0.005 0.010 0.005

Var | 7 | 0.4466 | 0.2966 | 0.4801 | 0.3170

s2 | 0.006 0.002 0.007 0.002

MSE | T | 0.9464 | 0.3601 | 0.4946 | 0.3274

52 0.02 0.004 0.007 0.002

3 5 z | 19.2521 | 9.8673 | 19.986 | 10.2426
s2 | 0.009 0.529 0.009 0.572

Bias | T | -0.7479 | -0.1327 | -0.014 | 0.2426

s2 | 0.009 0.529 0.009 0.572

Var | © | 0.5416 | 31.479 | 0.5887 | 33.9096

s | 0.001 35.122 0.011 40.645

MSE | | 1.1093 | 32.015 | 0.5976 | 34.529

s2 | 0.031 35.948 0.011 41.011

4 0 z | 19.3078 | 9.8056 | 19.7551 | 10.0327
s2 | 0.198 0.003 0.207 0.003

Bias | © | -0.6922 | -0.1944 | -0.2449 | 0.0327

s2 | 0.198 0.003 0.207 0.003

Var | | 10.9474 | 0.1505 | 11.471 | 0.1577

s2 | 3.273 0.001 3.609 0.001

MSE | @ | 11.6203 | 0.1910 | 11.7338 | 0.1616

s | 4.975 0.001 4.462 0.001
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Table 4: Empirical Results n = 500, 7 = 100

R:51,r:70,91:20,92:10

LS MOM

‘Case‘ 0, 0, 0, 0,
1 ) r | 15.3695 | 10.377 | 17.913 | 12.0946
s? | 0.030 0.033 0.043 0.043

Bias | T | -4.6305 | 0.377 | -2.087 | 2.0946

s? | 0.030 0.033 0.043 0.043

Var | T | 2.1088 | 2.0875 | 2.8652 | 2.8443

s | 0.097 0.114 0.187 0.207

MSE | ® | 23.5803 | 2.2617 | 7.2629 | 7.2738

s | 2.541 0.127 0.818 0.906

2 ) r | 16.7161 | 9.0369 | 19.4780 | 10.5301
s? | 0.004 0.001 0.005 0.001

Bias | T | -3.2839 | -0.9631 | -0.5220 | 0.5301

s? | 0.004 0.001 0.005 0.001

Var | © | 0.1880 | 0.0802 | 0.2640 | 0.1137

s | 0.001 | 0.00018 | 0.002 | 0.00028

MSE | ® | 10.9761 | 1.0088 | 0.5418 | 0.3961

s | 0.160 0.004 0.008 0.002

3 ) r | 16.6726 | 9.1783 | 19.9061 | 10.9586
s? | 0.003 0.079 0.003 0.111

Bias | T | -3.3274 | -0.8217 | -0.0939 | 0.9586

s? | 0.003 0.079 0.003 0.111

Var | T | 0.1707 | 4.4597 | 0.2492 | 6.3686

s? | 0.001 0.493 0.002 1.052

MSE | @ | 11.2449 | 5.2121 | 0.2614 | 7.3965

s2 | 0.118 0.869 0.002 1.305

4 0 r | 16.4738 | 9.1135 | 18.4071 | 10.1829
s 0.029 0.001 0.037 0.001

Bias | T | -3.5261 | -0.8865 | -1.5929 | 0.1829

s? | 0.029 0.001 0.037 0.001

Var | | 1971 | 0.0396 | 2.4729 | 0.0501

s | 0.149 | 0.00004 | 0.241 | 0.00006

MSE | © | 14.4335 | 0.8261 | 5.0461 | 0.0843

s | 1.575 0.002 0.596 | 0.00014
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6 IMPROVED ESTIMATORS

In this section, we present a modification of the fixed interval sampling method
which allows for improved estimator performance. Again, we assume that we
have a fixed total observation period, T', that can be divided into n intervals
of length, 7. For each interval, only the number of times a state is exited is
observable, but we have the ability to vary the length of the intervals. The
motivation behind varying the length of the intervals comes from an exami-
nation of the mean squared error for the least squares estimator. For fixed
T, the length of 7 affects the bias and variance of the least squares estimator.
As 7 increases the bias decreases and the variance increases. As 7 decreases
the bias increases and the variance decreases. Figure 1 illustrates how the
approximate mean square error of the least squares estimator, derived from
Corollary 1 and Result 4, varies according to fixed interval size for Case 1 of
Table 2. In the figure, the total observation period, T', and the number of
intervals, n, is fixed so that only 7 varies. Note how the mean square error
decreases and then begins to increase as 7 increases. This behavior suggests
that the mixing of smaller size intervals with larger size intervals may reduce
the effect of the bias increase while gaining a variance reduction. We call the

types of estimators presented in this section mixing estimators.
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Figure 1: Approximate MSE(él) vs Fixed Interval Size T for Case 1
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Figure 2 shows examples of two types of mixing strategies, non-overlapping
intervals (NOLI) and overlapping intervals (OLI). The sample path, T, is
divided into n,, intervals of size 7,,, such that T' ~ n,,7,,, for m =1,..., M.
We note that many other mixing strategies are possible. For the least squares
estimator, we examined two basic strategies for performing the estimation,

namely

1. perform the regression on each interval size separately and average the
estimates of the parameters, i.e. let 0:,, be the least squares estimate for

interval size m and state 1. If we denote the averaged estimator as éf‘
then 04 = (1/M)>M_, 0;,, would be the estimator for ;.

2. combine the different sized intervals into one regression so that Y; in
Equation 14 would vary with the interval size. The estimates would
simply be the standard least squares solution to linear model given in

Equation 14. We denote this estimator as éZR

With any of the mixing strategies and estimation methods there will be a
complex tradeoff between the degrees of freedom in the regression, dependence
within the intervals, and dependence across intervals which can effect the bias
and variance properties of the estimators. In Table 5, we present the results

of applying OLI to the the test cases given in Table 2.

]
m
>
1 2 3 4 5 6 7 8 9 0 time

Figure 2: Example Mixing Strategies
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Table 5: OLI Empirical Results

R:51,r:70,91:20,92:10
ny = 200, ny = 100, n5 = 66, T' = 50000

7 = 250, 7 = 500, 73 = 750

LS MOM
| Case | or or o o4 g4 g4
1 p | @[ 18722 [10.3319 | 18.6223 [ 10.2385 | 19.3572 [ 10.6507
s2| 0.196 | 0.194 | 0.206 | 0.203 | 0.220 | 0.217
Bias | & | -1.278 | 0.3319 | -1.3777 | 0.2385 | -0.6248 | 0.6507
s2| 0.196 | 0.194 | 0.206 | 0.203 | 0.220 | 0.217
Var | @ | 13.225 | 13.0909 | 13.8356 | 13.7046 | 14.8066 | 14.6667
s2| 4285 | 3588 | 4712 | 3.994 | 539 | 4.536
MSE | 2 | 15.0504 | 13:3909 | 15.9357 | 13.9609 | 15.4359 | 15.3032
s2| 5926 | 3.922 | 6.775 | 4.282 | 6.038 | 5.439
2 p | @ [192752 [ 9.7778 [19.1446 [ 9.715 [ 19.9043 | 10.1021
s2| 0.007 | 0.003 | 0.007 | 0.003 | 0.007 | 0.003
Bins | © | -0.7248 | -0.2222 | -0.8554 | -0.2850 | -0.957 | 0.1021
s2| 0.007 | 0.003 | 0.007 | 0.003 | 0.007 | 0.003
Var | @ | 0.3816 | 0.2360 | 0.3727 | 0.2294 | 0.4069 | 0.2479
s2| 0.004 | 0.002 | 0.004 | 0.001 | 0.005 | 0.002
MSE | @ | 0.9136 | 0.2836 | 1.1109 | 0.3139 | 0.4234 | 0.2614
s2| 0.017 | 0.003 | 0.021 | 0.003 | 0.005 | 0.002
3 p | [19.2376 ] 9.9532 [19.0904 | 9.8751 [ 19.9756 [ 10.3339
s2| 0.006 | 0.34 | 0.006 | 0.336 | 0.007 | 0.365
Bins | & | -0.7624 | -0.0468 | -0.9096 | -0.1249 | -0.0244 | 0.3339
s2| 0.006 | 0.34 | 0.006 | 0.336 | 0.007 | 0.365
Var | @ | 04342 | 225902 | 0.4325 | 22.7526 | 0.4762 | 24.646
52| 0.007 | 18.982 | 0.007 | 19.008 | 0.008 | 22.219
NSE | @ | 1.0217 | 22.926 | 1.266 | 23.098 | 0.4834 | 25.1153
s2| 0.024 | 18959 | 0.031 | 19.029 | 0.008 | 22.311
4 ;|7 [192209 [ 9.8143 [19.1318 [ 9.7663 | 19.6693 | 10.0422
52| 0.1615 | 0.002 | 0.1633 | 0.0021 | 0.1712 | 0.0022
Bias | @ | 0.7791 | -0.1857 | -0.868 | -0.2337 | -0.3307 | 0.0422
52| 0.1615 | 0.002 | 0.1633 | 0.0021 | 0.1712 | 0.0022
Var | 7 | 83114 | 0.1175 | 8.3919 | 0.1182 | 8.8287 | 0.1247
s2| 1.514 | 0.00036 | 1.547 | 0.00038 | 1.7184 | 0.00044
NMSE | € | 0.0767 | 0.1541 | 9.3056 | 0.1749 | 9.1059 | 0.1287
52| 2.9194 | 0.00043 | 3.1977 | 0.00055 | 2.499 | 0.00056
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For the OLI experiments, we selected three interval sizes, (71 = 250, 7
= 500, 73 = 750), to represent small, medium, and large size intervals with
the observation of the 75 interval starting after 500 minutes in order to give
ng = 66. If we compare the OLI least squares results to the least squares results
of Table 3, we see a slight increase in bias and a significant decrease in variance
for those cases in which least squares had high variance. There does not appear
to be a significant difference between the éf‘ and éZR estimators although éZR
may have slightly better performance. The method of moments has similar
results. Figures 3 and 4 illustrate the mean squared error of the estimators as
compared to the base interval size of 7 = 500. The basic conclusion is that OLI
mixing strategy can significantly improve the mean squared error properties
of the least squares and method of moments estimators with the improvement
coming at the cost of a small increase in bias. Empirical results also indicated
that NOLI gives similar improvements. In essence, the mixing strategies allow
the overall estimation process to be less sensitive to a bad choice of interval

size.
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7 SUMMARY AND CONCLUSIONS

This paper examined the estimation of the mean of the sojourn time distri-
bution function for a Markov renewal process under a strict but realistic data

availability condition. The contributions include

1. The definition of the state exiting counting process and analytical for-

mulation of the solutions for the moments of the ECP’s.

2. Analytical evaluation of the least squares estimator in terms of approx-

imations for the bias, variance, and mean squared error properties.

3. Development of a MOM estimator and analytical evaluation in terms of

approximate bias.
4. Empirical comparison of the least squares and MOM estimators.

5. Presentation of a data collection strategy which improves the overall

performance of the estimators.

We found that the least squares estimator is biased in general. The bias
increases as the fixed interval length decreases, and decreases as the fixed
interval length increases. The variance of the least squares estimator may be
quite large depending upon the parameters of the MRP. The variance increases
as the fixed interval length increases, and decreases as the fixed interval length
decreases for a fixed total observation period. The variance of the estimator
corresponding to state j increases(decreases) as the steady state probability
associated with the embedded Markov chain for state j decreases(increases).
The variance also increases as the two state Markov renewal process becomes
more like an alternating renewal process. We showed that for deterministic
sojourn times the bias and the variance of the least squares estimators should
be small (approximately zero). Finally, we showed that the asymptotic values
of the MOM estimators should be approximately equal to the true parameters
dependent upon the selection of a large enough fixed interval size.

The empirical results confirm the analytical results and also indicate that
the MOM estimator appears more robust to the size of the fixed interval and

may have slightly better MSE properties. The results for the OLI mixing
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strategy indicate that the strategy may increase bias slightly while having
the potential to significantly decrease the variance in those cases where the
variance of the estimator was originally large. As such, the mixing strategies
offer protection against a bad choice for the size of the fixed interval.

We note that while our analysis was limited to the two state MRP the
results should be applicable to larger state space situations by collapsing the
state space down to two states. If we wanted to estimate 6;, the first step would
be to aggregate all states other than state 7 into a single state labeled as state
two. We would then perform the analysis on the two states. The process
would then be repeated for all the other states to achieve estimates for all of
the #;. Finally, the least squares mean sojourn time estimation methodology
could also be directly applied to the larger state space situation by expanding
the linear model to include the counting processes for the larger number of
states. Further analytical and empirical research needs to be done to examine

the affect of the aggregation process on the estimator’s performance.

APPENDIX

Proofs of the lemmas, theorems, corollaries, and other results are given in

this appendix.

Proof for Theorem 1:

By renewal arguments, one can show that,

. Fi(s) S0y pix Mys (5) ifi 7
Mi;(s) :{ Fi(s) [1+ S pac M (s)] if i = (%)
o F(s) S pu Wy (s) ifi77
= { Bi(s) [U4 I p (Wisls) + 2005 (0))] =5
i) = 1?2(3) Zﬁi} piéiléjf(s) 3 itig ik j#k (30)
ik Fi(s) [Zg«ﬂpw (hm(S) + MM(S))} ifi=jand j#k

See Theorem 1 in Rossetti and Clark(1994) for more details. From Cinlar(1975,
pp. 11-12) and Pyke(1961b), we have



Thus, the results follow by placing the equations for sz(s), mj(s), and iwk(s)
in matrix form, noting the definition of matrix multiplication and solving the

matrix equations. O

Proof for Theorem 2:
By construction, { N7 (¢)} has stationary increments, see Wolff(1989, pg 109-
110). Let

Xir = N{((0)7) = Ng(G—1D)r), i =1,2,..., (31)
where 7 is a fixed interval size. Thus {X;;,7 =1,2,...,} is a stationary
process. Assume that {X;;,0=1,2,...,} is ergodic with E[X;;] < oo and
E[X3] < oo then by Theorem 5.6 of Karlin and Talyor(1975, pg. 487-488),

we have that as n — oo,

71:(1/7@);)@1 BB [Xiy] = B[Ny (7)] (32)
72:(1/7@)2&2 B E[Xy] = E[Ny(7)] (33)
752):(1/n)§;X221 R [XE] = E[N(r)] (34)
7?:(1/@%})@ R [XL] = B[NE(r)] (35)

From Serfling(1980, pg. 24-26), we have that

X1X2 = (l/n) ZX“XZ'Q % E [X11X12] = E [Nl(T)NQ(T)] (36)
=1
The results given in equations (18) and (19) follow from an application of the

theorems given in Serfling(1980, pg. 24-26) provided that the denominator
#0. O

Proof for Corollary 1:
Fix the interval size at 7. Let E[Ni(r)] = Fir, E[Ny(7)] = Gy7. For 07,
substitute into Equation 18 to yield

A T3 (F1D2 - GlAQ)

iy = (37)
(B2D2 — A%) T2 — (%Bng + %B3D2 — A2A3) T3
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Using Result 1 yields the desired result. The result for ég is similar. O

Proof for Result 3:

From Graybill [7, pg. 171,216], assume the following standard linear model
assumptions. Let Y be an n x 1 observable vector of random variables; let X
be an n x p matrix (n > p) of known fixed numbers; let @ be a p x 1 vector of
unknown parameters; let € be an n x 1 unobservable vector of random variables
with E[e] = 0 and Cov [¢] = MSEx I where MSEgr > 0 is unknown and T is
the (n x n) identity matrix. Thus, we are assuming that € has an unknown
distribution with each ¢; having mean zero and constant variance and that ¢;
and ¢; are uncorrelated. According to standard linear model regression theory,
see Graybill(1976, pg. 217) an estimate of the MSE for the residuals about the

regression is given by

e AN/ A

MSEp = | — p (Y -X8) (Y - X8) (38)
where 8 is the least squares estimator of 8. Application to the linear model

2
K:ZXﬁg@k—I—Q, (izl,...,n) (39)
k=1
yields
1

MSER =

n —

5 (Z Y2 =0, XaVi — 0 ZXZ»QYZ») (40)
1 =1

For our sampling method, we note that Y; = 7, substitution yields

"72 (r— (0,X) +6,X.)) (41)

n —

MSER =

Substitution of the results of Theorem 2 and Corollary 1 yields the approxi-

mation. O

Proof for Result 4:
This result follows the same argument as the proof of Lemma 3 after noting

that by standard linear model regression theory estimates of

v 2
Va[o] = Mm% (12
n (X)) - (N X)?

— MSE X;
Varls,] = MmN (43)

o (X)(X,) - (N Xs)?
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and that MSE = Bias? 4+ Var. Substitution of the results of Theorem 2 and
Corollary 1 yields the approximation. O

Proof for Estimator 2:

We have that E[N(7)] = 7/60, Var [N;(7)] = o (ﬁ + 7?#) 7, Var [Ny(7)] =

93 ™1

Z—g (ﬁ—l— mé%) T, and Cov [N{(7), Nao(7)] = T2 (6% — 010:)) T where X =

) 93

(2/3) — 1. Noting that my, m2, and 0 are directly estimable from the data
indicates that we have four equations with four unknowns 6, 6,, A, and 2.
Solve Cov [Ny (7), Na(7)] for % and substitute into the equations for Var [Ny (7)]

and Var [N(7)] and after some algebraic manipulation we have

01 mVar[Ny(7)] = mCov [Ni(7), Na(7)]
0~ mVar [Ni(r)] = mCov [Ni(7), Na(7)] (44)

Substituting in the sample moments into Equation 44 and using 7 = X6, +
X0, yields the desired result. O

Proof for Corollary 2:
Let [21 and ﬁmom be the numerator and denominator in Equation (24). By

the same convergence arguments given in Theorem 2, we have that

~ wpl

Do 5 B[N(P)E [N (7)] = 2B [N (1)) E[Na(1)] B[Ny (1) No(7)] +
E[Nao(r)] B [N(r)] = D

mom

2 wpl

Ly B 7 (BIN(m)] B[N} (7)] = BINi(7) Na()] B [Na(7)]) = Lf

Thus, 6, B f/‘f/Dfnom, provided D(Tlnom # 0. Substitution of the moment
equations given in Definition 2 yields

T3 (Fi Dy — G Ay)
(FEDy + GiBy — 2F1 G Ag) T2
Substitution of the equations given in Result 1 yields the desired results. The

07 =

(45)

derivation for 65 is similar. O
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