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ABSTRACT  
 
This paper presents an overview of a software design 
framework for the development of object-oriented 
simulations.  The framework is documented using the 
Unified Modeling Language (UML) and is divided into 
packages to organize the collection of classes into 
important functional areas.  The purpose of the framework 
is two-fold.  First, the framework is useful in understanding 
the concepts and abstractions within simulation modeling 
and languages.  Secondly, the framework can serve as the 
basis for the development of object-oriented simulation 
libraries.  We illustrate the latter through a Java 
implementation. 
 
1 INTRODUCTION 
 
According to Booch et al. (1999), a software design 
framework is �an architectural pattern that provides an 
extensible template for applications within a domain.�  A 
framework provides a set of abstract and concrete classes 
that can be extended via sub-classing or used directly to 
solve a particular problem within a particular domain.  This 
paper discusses a software design framework for object-
oriented simulations.  A framework can ease the work of 
researchers, educators, and practitioners.  An object-
oriented simulation framework can provide a better 
understanding of key abstractions within simulation 
modeling and can provide a blueprint for the development 
of object-oriented simulation libraries.   
 Numerous organizations and individuals have 
developed object-oriented simulations tools.  These tools 
have been implemented using languages such as C, C++, 
and, recently, Java; however, there is very little 
documentation in the literature describing the common 
abstractions used within these tools.  For example, Hirata 

and Paul (1998) describe a method for developing object-
oriented designs for simulation.  The article does not 
emphasize the underlying framework, but instead, focuses 
on the process of design.  Other object-oriented simulation 
tools or packages include SIMEX (1998), a set of C++ 
classes for performing dynamic population simulations, 
Schwetman�s (1986) CSIM++ an extensive set of classes 
for performing process and event based simulations in 
C++, and Joines and Roberts� YANSL (1996) which 
supports the development of C++ simulations using the 
network modeling view.  In addition, Healy and Kilgore 
(1997) describe Silk, a comprehensive extension of the 
Java simulation language for developing process-oriented 
simulations.  Finally, MODSIM, Mullarney (1997), is a 
complete simulation language developed explicitly for the 
object-oriented modeling of complex, dynamic systems. 
 Our emphasis in this paper is to propose and present a 
framework that can serve as the basis for the development 
of simulation libraries in any language.  At this point our 
framework is not intended to be the definitive framework 
for object-oriented simulation modeling; however, our 
purpose is to spur further development and documentation 
of such a framework so that the duplication of effort that 
occurs in every simulation language development effort 
can be mitigated and that some standardization can take 
place between these efforts. 
 Since the framework is presented as a set of Unified 
Modeling Language diagrams, we begin with a basic 
introduction to reading these diagrams. The paper then 
discusses the key packages within the framework.  This 
will primarily consist of an explanation of the abstractions, 
their intended behaviors, and how they interact with each 
other.  Finally, to make the framework more concrete, we 
present a limited implementation of the framework in Java 
with examples of event and process modeling. 
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2 UNIFIED MODELING LANGUAGE 
 
The Unified Modeling Language (UML) is a modeling 
language for the conceptual and physical representation of 
object-oriented systems.  The language is general enough to 
include both software intensive systems as well as general 
systems modeling. The UML contains a set of graphical 
symbols (notation) and a well defined set of semantics for 
specifying precise object-oriented models.  An object-
oriented model contains such abstractions as classes, 
attributes, operations, objects, associations, states, etc.  The 
UML is based on a detailed meta-model of these abstrac-
tions that precisely defines their meanings and how they 
relate to each other.  For further details of the UML�s meta-
model, we refer the interested reader to the Object 
Management Group�s UML version 1.3 specification at 
<www.omg.org/cgi-bin/doc?ad/99-06-
08.pdf>.   
 The UML allows the development of various models 
of a system in the form of diagrams to represent key view 
points just as different blueprints of a house examine 
important aspects such as the electrical, water, and 
structural components.  The primary modeling view used 
in this paper is the structural view.  We primarily use class 
diagrams to show a set of classes and their relationships.  
UML also contains a rich set of behavioral diagrams to 
specify the dynamic aspects of a system. 

The static structure of a system can be visualized in 
the form of a class diagram.  A class describes a group of 
objects with similar properties (attributes), common 
behavior (operations), common relationships to other 
objects, and common semantics.  A class diagram 
illustrates the relationships between classes through 
associations.  An association describes a group of links 
with common structure and semantics.  A link is simply a 
physical or conceptual connection between object 
instances.   

Figure 1 presents a generic class diagram.  Each class 
is indicated with a rectangle divided into three areas for the 
class name, attributes and operations.   An object attribute 
is a named property of a class that describes a value held 
by each object of the class.  Each class can have some 
operations.  An operation is the implementation of a 
service that can be requested from any object of the class.  
Operations affect the behavior of an object instance.  
Associations are indicated by an adorned line between 
classes. 

In the figure, SubClass1 specializes the more general 
ParentClass as indicated with the arrow between SubClass1 
and ParentClass.  The generalization/specialization 
relationship is typically implemented using the inheritance 
features of a language.  An association exists between 
Class1 and Class2.  This is indicated in the figure by the 
line labeled Association between Class1 and Class2.  Each 
end of an association is adorned with the multiplicity of the 

relationship.  Multiplicity indicates the number of instances 
of one class that may relate to a single instance of an 
associated class.  When reading an association, the class 
you begin with is called the source.  The class you traverse 
to is called the target. The association between Class1 and 
Class2 would be read as follows. Each instance of Class1 is 
associated with zero or more (0..*) instances of Class2.  
Each instance of Class2 is associated with exactly 1 
instance of Class1.  Another association exists between 
SubClass1 and Class2.  In this case, this association has 
attributes and operations.  The class AssociationClass 
describes the set of links between SubClass1 and Class2.  
The instances of an association class are objects but they 
derive their identity (existence) from instances of the 
participating classes.  Aggregation is a form of association 
that is used to represent the �part of� association.  The 
whole is called the assembly, aggregate, or composite.  The 
parts are called parts or components.  An aggregation is 
indicated with a diamond on the end of the associate that is 
the aggregate.  Identifying a relationship as an aggregation 
has implications during the implementation phase of 
design.  Further detail can be added to the model through 
the use of an attached note as indicated in Figure 1. 

 

This is an 
attached note
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operation1( )
operation2( )

rolename2

0..*

rolename1

0..*

SubClass1

attribute1
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operation1( )
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attribute2
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0..*

Association

1..*
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1..*

 
Figure 1:  Generic Class Diagram 

 
We have only touched on parts of the UML 

specification.  The UML is the recommended standard for 
specifying object-oriented systems.  As such, it will be 
increasingly important that simulationists understand the 
language.  The UML can be used to model simulations, 
enterprise information systems, real-time systems, and 
other software applications.  The UML can be used for 
modeling, documentation, visualizing, specifying and with 
code generation even constructing software programs.  The 
power of UML is in achieving a standardized 
communication medium.  A complete description of the 
UML is beyond the scope of this paper.  We refer the 
interested reader to Larman (1998) or Booch et al. (1999) 
for further information on the UML. 
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3 SIMFONE′′′′ PACKAGES 
 
The SIMFONE′ (simulation framework one) represents a 
proposed framework for the development of object-
oriented simulation libraries.  SIMFONE′ (pronounced 
symphony) is currently divided into six main packages 
pertaining to: 
 

• Simulation management  
• Simulation executive 
• Processes 
• Resources and queues 
• Random number generation 
• Statistics 

 
Additional utility and support packages are also necessary 
when developing a specific language implementation.  This 
paper will concentrate on the simulation management, 
simulation executive, and the process package.  We will 
briefly discuss the other packages to highlight their main 
structures. 
 
3.1 Simulation Management Package 
 
The simulation management package contains classes that 
are used in the development of the simulation including 
modeling and experimentation.  The class Simulation 
provides for the overall coordination of the simulation run.  
The Simulation class requires an experiment, a model, and 
a scheduler to perform its work.  The Simulation class acts 
as a mediator between the Experiment, Model, and 
SchedulerIfc classes.  In addition, it also controls the 
reporting of replication results, final summary results, and 
the start, stopping, and pausing of the simulation run.   

A key class in this package is SimObject.  The 
SimObject class represents those objects within a 
simulation that can participate in event scheduling and that 
can be included in a model.  Instances of SimObject can 
schedule and cancel events and can be added or deleted 
from a model.  They not only schedule events but also 
process the events when the time of the event occurs.  They 
can be setup at the beginning of an experiment, initialized 
at the beginning of each replication, and warmed up 
individually.  They can also react to the beginning of a 
replication and to the end of a replication.  

The Model class is a subclass of SimObject.  This 
allows a model to schedule and respond to events. A Model 
is a representation of a system with the intention to predict 
the system�s behavior when certain events occur.  A Model 
manages the addition and/or removal of SimObjects; 
therefore, the Model can be composed of one or more 
object of type SimObject.  An instance of Model is 
necessary for an object of type Simulation to be created.  

The class Experiment represents the information 
necessary for the control of a replication of an experiment.  

An experiment has a specified number of replications, the 
starting and ending times for the replications, and a warm 
up time to be applied to each replication.  A set of zero or 
more response variables can be attached to an experiment.  
A response variable is a variable of interest within the 
experiment that can be recorded across replications.   A 
response variable is a subclass of SimObject.  This allows 
response variables to schedule and handle events, 
especially those events that represent the beginning and 
ending of the simulation replication. Although not shown 
in this diagram, an experiment can also have a set of input 
factors attached to it. 

 

0..*

SimObject
name
endTime
warmUpTime

setup( )
initialize( )
getTime( )
processEvent( )
dispatchEvent( )
scheduleEvent( )
cancelEvent( )
beforeReplication( )
afterReplication( )
addToModel( )
deleteFromModel( )
warmUpAction( )
endEventAction( )

Model
addSimObject( )
removeSimObject( )
setUpSimObjects( )

0..*

SchedulerIfc
start( )
pause( )
stop( )
beforeEvent( )
executeEvents( )
schedule( )
cancel( )
cancelAllEvents( )
initialize( )
getTime( )

<<interface>>
0..*

ResponseVariable
name
initialValue
currentValue

initialize( )
addObserver( )
deleteObserver( )

Simulation
start( )
pause( )
stop( )
turnOnReplicationReport( )
turnOnSummaryReport( )
turnOnTraceReport( )

Experiment
numReplications
startTime
endTime
warmUpTime

beforeReplication( )
afterReplication( )
addResponseVariable( )
removeResponseVariable( )

0..*

 
 

Figure 2:  Simulation Management Class Diagram 
 
The SchedulerIfc interface defines the behaviors 

expected of the simulation executive.  The primary purpose 
of this class is the time ordered execution of events.  The 
Simulation class delegates to an instance of a class that 
implements the SchedulerIfc interface to control the events 
during a replication. 

 
3.2 Simulation Executive Package 
 
The simulation executive package, shown in Figure 3, 
manages the execution of events.  When a simulation 
object wishes to have some action occur at some point in 
the simulated future, the object will notify the scheduler of 
the time the action should occur and the type of the action.  
The Scheduler Package manages these future events in 
chronological order and performs the requested actions at 
the specified times.   
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ActionListener
action( )

<<interface>>

execute()
{ dispatcher.dispatchEvent(this)
}

SchedulerIfc
<<interface>>

CalendarIfc
add( )
cancel( )
clearCalendar( )
isEmpty( )
popNext( )

<<interface>>

JSLScheduler

implements

listener

EventListener
<<interface>>

0..*

0..*

PriorityCalendar

implements

0..*

Event
priority
name
identifier
time
type
cancelledFlag

execute( )

0..*

0..*

dispatcher

0..*

SimObject
name

getTime( )
processEvent( )
dispatchEvent( )
scheduleEvent( )
cancelEvent( )

0..*

ProcessEventProcess

0..*

 
Figure 3:  Simulation Executive Package 

 
The Simfone′ framework has been designed with the 

goal of allowing multiple implementations of simulation 
schedulers.  This will enable simulation scheduling 
algorithms to be easily evaluated.  Any new scheduling 
algorithm simply must implement the behavior contained 
in the ScheduleIfc class.  The class JSLScheduler is an 
example of this for a Java implementation.  In addition, an 
interface to represent the simulation calendar has been 
defined such that different calendar implementations can 
be easily interchanged as long as the CalendarIfc interface 
is implemented.  The class PriorityCalendar is a concrete 
class that implements a simulation calendar within our Java 
implementation.  It is based on the use of data structures 
available within the Java Generic Library.  

The class Event represents a simulated event.  A 
simulated event can have a priority, a type, a time, and a 
unique identifier.  While time is the primary means by 
which events can be ordered, the current definition allows 
ordering via priority, type, and order of creation.  These 
attributes are useful for the implementation of general 
scheduling algorithms.   

The framework uses a delegation-based event 
processing model.  Objects of type SimObject have the 
ability to schedule events.  This creates an instance of type 
Event and places the event on the schedule.  When the 
event�s execute method is called the event calls back to a 
SimObject that is acting as its dispatcher.  The dispatcher 
processes the event by sending the event to an event 
listener that has been registered to handle that type of 
event.  The event listener then invokes the appropriate 
action for the event. 

 
3.3 Process Package 
 
The process package, shown in Figure 5, consists of those 
classes necessary to implement the process view of 
simulation. The process package interacts primarily with 

the Simulation Management package.  A process can be 
used to represent the life of a simulated object.  The 
abstract class Process has methods that allow transitions 
between states that are mapped to the life of the object.  

 

Process

startTime
priority

process( )
activate( )
reactivate( )
suspend( )
resume( )
interrupt( )
terminate( )
waitfor( )

<<abstract>>

 
 

Figure 4:  Process Class 
 

SimObject

Active

Inactive

Interrupted

CancelledSuspendedState

TerminatedState

ActivityDelayedState

ResourceWaitStateConditionalWaitState ExecutingState

ReadyState

0..1

Distribution

ActivityState

0..*

current 0..1

Activity

0..1

ProcessState

Process
<<abstract>>

0..*

0..1

InterruptedState

 
 

Figure 5:  Process Package 
 
A Process allows the simulation of elapsed time within 

its process() method.  The process() method 
contains calls that may interact with resources and 
activities to model the life or sequence of activities 
associated with a simulated object.  A process may 
waitfor() a resource to become available, for an 
activity to be completed, and for a condition to become 
true.  A process interacts with the Scheduler through its 
methods inherited from SimObject.   

Within a process view implementation of this design, 
pseudo-parallelism, i.e. the appearance of concurrent 
multiple simulated objects interacting through time, must 
be considered.  A variety of techniques exist to implement 
the process view.  Traditional simulation languages such as 
SIMAN and SLAM present a process view essentially by 
defining functions for every language construct, even if-
then statements.  A process is defined by a set of function 
calls.  The state of the process essentially becomes the 
current function call.  This has disadvantages in terms of 
the lack of local variables and is inherently not an object-
oriented approach.  Other languages such as Simscript II.5 
and MODSIM use a co-routine facility to save the state of 
the process.  This is dependent upon a compiler 
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implementation of these facilities.  CSIM++ relies on a 
similar implementation through the use of preprocessing.  
If the underlying language supports multi-threading either 
directly as in Java or indirectly through a thread package 
(e.g. POSIX) then the process view can be implemented 
via threads.  The point is the mechanism by which the 
pseudo-parallelism is implemented should be presented as 
layer of abstraction between a simulation modeling 
framework and its implementation.  Although our 
framework is not dependent upon a thread-based 
implementation our example in Java assumes the 
availability of a thread framework. 
 The ProcessState class and its subclasses 
(SuspendedState, TerminatedState, ActivityDelayedState, 
ResourceWait State, ConditionalWaitState, ExecutingState, 
ReadyState) model the states that a process may be in during 
its life via the State pattern.  See Gamma et al. (1995) for 
additional information on patterns in software design.  The 
states that a process can be in are illustrated in Figure 6.  The 
ReadyState represents a process that has been initialized and is 
ready to begin its life.  The ActivityDelayedState represents 
when the process is delayed waiting for an activity to 
complete.  The InterruptedState represents when a process has 
been interrupted during an activity delay.  The 
SuspendedState represents when the activity has suspended 
itself waiting for a reactivation from a different process.  The 
ConditionalWaitState represents when an activity is waiting 
for a condition in the model to become true.  The 
ResourceWaitState represents when a process is blocked 
waiting for a resource to be available.  The ResourceWaitState 
is actually a special case of a ConditionalWaitState; however, 
since waiting for a resource is such a common formalism in 
simulation, we decided to present it as a separate class to 
allow for potential implementation optimizations. The 
ExecutingState represents when a process is not blocked or 
delayed.  The TerminatedState represents when a process�s 
life cycle has completed. 
 

ReadyState

ExecutingState

ConditionalWaitState

ResourceWaitState

ActivityDelayedState

SuspendedState

InterruptedState

TerminatedState

new

*reactivate( t )

resourceAvailable

suspend

conditionSatistfied

suspend

terminate

*resume

terminate

*interrupt

activityCompleted

suspend

waitfor( Condition c )

waitfor( Resource r )

waitfor( Activity a )

*activate( t )

suspend

The terminated state may also be reached 
from  ConditionalWait, ActivityDelayed,  and 
ResourceWait

* causes an 
event to be 
scheduled

schedules event for 
activity's remaining time 
since interrupt

 
 

Figure 6:  Process States 

InactiveState

ActiveStateInterruptedState

CancelledState

new

start
resume

cancel

interrupt cancel

inactivate

 
 

Figure 7:  Activity States 
 
3.4 Resource and Queue Packages 
 
The Resource Package, shown in Figure 8, is designed to 
model the general allocation of resources in complex 
systems.  Specifically, this package provides a default 
design for the modeling of reusable system capacity 
through Resources, Requests, and Queues.  The Resource 
class handles all service requests and allocation of 
capacity.  The Request class stores information pertinent to 
an individual request for a Resource, such as the amount of 
the Resource requested and the current state of the 
Request.  Classes that want to make requests for resources 
must implement the RequestorIfc.  The Resource class 
allocates capacity to requests by placing them in a service 
queue or if no capacity exists into a waiting queue.  The 
Resource class works with classes that implement the 
QueueIfc.  This allows different queueing disciplines to be 
implemented in concrete classes such as the FIFOQueue.  
The QueueIfc works with classes that implement the 
QObjectIfc such as the QObject.  Objects of type Request 
are sub-classed from QObject so that requests can be held 
in queues. 
 An Activity represents a duration of simulated time 
that a process may experience.  The states of an activity 
(Inactive, Active, Interrupted, Cancelled) are also modeled 
with the State pattern via subclasses of ActivityState.   

 
3.5 Random Number Package 
 
A simulation framework would be incomplete without a 
random number package.  An example hierarchy for 
distributions is given in Figure 9.  The random number 
generation functionality should be factored out of the 
distribution hierarchy via delegation.  The distributions can 
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delegate random number generation to a class that 
implements the random number generator interface 
(RNGIfc) when calling their individually implemented 
sample() methods.  In this way, different random 
number generators can be used as long as they implement 
the RNGIfc such as done by JSLRNG. 
 

FIFOQueue

QObjectIfc

getTimeStamp( )
setTimeStamp( )
getPriority( )

QObject

JSLProcess

RequestorIfc

requestCancelled( )
requestCompleted( )
requestDequeued( )
requestQueued( )
requestSatisfied( )

implements

Request

name
creationTime
queueTime

seize( )
release( )
cancel( )
queue( )
dequeue( )

inservice waiting

QueueIfc

enqueue( )
peekNext( )
removeNext( )
remove( )
length( )

implements

Resource

capacity
numberWaiting
numberAvailable

handleArrivingRequest( )
placeRequestInService( )
placeRequestInWaitQ( )
satisfyNextRequest( )

implements

 
Figure 8:  Resource Package 

 

Discrete Continuous

JSLRNG

Bernoulli

Binomial

DiscreteUniform

Poisson

Exponential Erlang

GammaNormalUniform Triangular

Weibull

Constant

RNGIfc

nextDouble( )
setSeed( )

Distribution

name
stream

sample( )
pdf( )
cdf( )
mean( )
variance( )implements

 
 

Figure 9:  Random Package 
 
3.6 Statistics Package 
 
The collection of statistics is accomplished in the statistics 
package, shown in Figure 10.  Because of the concept of 
response variables, our statistics package is minimal.  The 
ResponseVariable class is sub-classed into count based  

responses (Counter), observational responses (Tally), and 
time persistent responses (TimeWeighted).  These classes 
appropriately override the setValue() method.  The 
setValue() method performs the updating of the value 
of the response variable and its weight.  In addition, it is 
responsible for notifying any observers of changes to the 
response variable.  An instance of type Statistic can be an 
observer of a response variable since it extends the abstract 
class RVObserver.  Additional observers can be defined 
such as dynamic charts.  The Statistics class can be further 
subclassed to implement specialized estimators such as 
batch means and time series. 
 

TimeWeighted

lastValue

setValue( )
initialize( )
increment( )
decrement( )

public setValue(double v, double w)
{ value = v;
timeOfLastSet = getTime();
weight = w;
notifyObservers();
}

Tally
Counter

0..* Experiment

addResponseVariable( )
deleteResponseVariable( )

default

Statistic

name
value
weight
num
sum
sumsq
sumweights
min
max

getAverage( )
getMeanSquare( )
getSampleVariance( )
getSampleStdDev( )
getSum( )
getSumOfSquares( )
getCount( )
collect( )

ResponseVariable

name
initialValue
weight
timeOfLastSet

setValue( )
getValue( )
getWeight( )
initialize( )
notifyObservers( )
addObserver( )
deleteObserver( )

0..*

RVObserver

reset( )
update( 

<<abstract>>

public notifyObservers()
{
for each observer
call update(this)
}

 
 

Figure 10:  Statistics Package 
 
4 JAVA IMPLEMENTATION EXAMPLE 
 
In this section, we present an implementation of a simple 
G/G/c queueing simulation in Java.  The Simfone′ 
framework was implemented into a class library to support 
simulation in Java.  The library is called the Java 
Simulation Library (JSL), pronounced �jissle�.  A 
complete discussion of the implementation of the JSL is 
beyond the scope of this paper; however, its functionality 
is based on the already discussed Simfone′ framework.  
Our intention is to provide enough detail so that the reader 
can make the above concepts more concrete. 

We will first illustrate how to model a M/M/1 queue 
with the event view within JSL and then illustrate how the 
same system can be modeled using the process view.  To 
begin the event view model, we must extend a class from 
the Model class.  In this example, we have created a 
general model of a G/G/c queue.  The constructor takes in 
a parameter for the number of servers, the arrival 
distribution, and the service distribution.  The default 
constructor makes a M/M/1 model with the mean time  
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between arrivals equal to 1 and the mean service time 
equal to 0.5.  The Exponential class is used to create the 
appropriate distributions that are passed into the model. 

 
 
public class GGcEventModel extends Model 
{ 
 public GGcEventModel() 
 { 
  this(1,new Exponential(1.0), new Expo-
nential(0.5)); 
 } 
  
 public GGcEventModel(int numServers, 
Distribution arrivals, Distribution service) 
 { 
// constructor logic here 
 } 
// method and variable definitions here 
} 

 
In a main application class, the user must create the model.   
 

public class Application  
{ 
 public static void main(String args[]) 
 { 
  double arrivalMean = 1.0; 
  double serviceMean = 0.5; 
  int numServers = 1; 
  int numReps = 5; 
  double simLength = 1000.0; 
   
  Project project = new Project 
(�Rossetti�, �GGc Test�);   
  Experiment exp = new Experiment 
(numReps, simLength); 
  GGcEventModel model = new GgcEvent-
Model(numServers, new Exponential 
(arrivalMean), new Exponential(serviceMean)); 
 
//  GGcProcessModel model = new 
GGcProcessModel(numServers, new 
Exponential(arrivalMean), new 
Exponential(serviceMean)); 
 
Simulation sim = 
project.makeSimulation(model, exp); 
    
  sim.start();   
 } 

} 
 
In the application, a project is created, an experiment 

is created and then the model is created.  The project is 
then told to make a simulation given the model and the 
experiment.  This ensures that the model, project, 
simulation, and experiment are properly allocated and their 
associations are properly created.  Then the simulation is 
told to start(). 

The GGcEventModel begins by accepting the 
parameters of the model and then builds the event listeners 
for events.  Every model has two methods for initializing 
its state.  The method setup() is called before the first 
replication and allocates the response variables 

(queueTimeRV and queueLengthRV) and adds them 
to the experiment.  The method initialize() is called 
before each replication and can be used to set the state of 
the system before each replication. 

 
public class GGcEventModel extends Model 
{ 
 public GGcEventModel() 
 { 
  this(1,new Exponential(1.0), new 
Exponential(0.5)); 
 } 
  
 public GGcEventModel(int numServers, 
Distribution arrivals, Distribution service) 
 { 
  setNumberOfServers(numServers); 
  setServiceDistribution(service); 
  setArrivalDistribution(arrivals); 
  setName(�GGcEventModel�); 
  myArrivalListener = new Arrival 
Listener(); 
  myBeginServiceListener = new Begin 
ServiceListener(); 
  myEndServiceListener = new EndService 
Listener(); 
  myNumBusyServers = 0; 
 } 
  
 // get/set methods would be here 
     
 public void setUp() 
 { 
  queueTimeRV = new ResponseVariable 
(�Queue Time�); 
  queueLengthRV = new TimeWeighted 
(�Queue Length�);   
  queueTimeRV.addToExperiment(); 
  queueLengthRV.addToExperiment(); 
  
  myWaitingQ = new FIFOQueue(�GGC Q�);
   
  myWaitingQ.addToExperiment(); 
 } 
     
 public void initialize() 
 { 
  // empty and idle 
  myWaitingQ.clear(); 
  myNumBusyServers = 0; 
  // start the arrivals 
  scheduleArrival(); 

} 
 
In the following code snippet, the ArrivalListener 

class�s action method creates an object of type Customer.  
The Customer class is simply a class to represent 
customers with the primary purpose of tagging their arrival 
times.  For brevity the class is not shown here.  The 
ArrivalListener enqueues the customer, adjusts the 
response variable, and checks to see if the customer can 
begin service.  In addition, it schedules the next arrival.  
The BeginServiceListener increments the number of busy 
servers, removes the customer from the waiting queue, 
adjusts the values of the response variables, and schedules 
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the end of service.  The EndServiceListener decrements the 
number of busy servers and checks to see if any additional 
customers are waiting.  If so, the customer is scheduled to 
begin service. 

 
 class ArrivalListener implements JSLAction 
Listener 
 { 
  public void action(JSLEvent event) 
  { 
   Customer c = new Customer(); 
   
   myWaitingQ.enqueue(c); 
  
 queueLengthRV.setValue(myWaitingQ.size());
    
   if (myNumBusyServers < myNum 
Servers) 
    scheduleBeginService(c);
   
   scheduleArrival();  
  
  } 
 } 
  
 class BeginServiceListener implements JSL 
ActionListener  
 { 
  public void action(JSLEvent event) 
  { 
   myNumBusyServers++;  
  
   Customer c =  

(Customer)myWaitingQ.removeNext(); 
  
 queueLengthRV.setValue(myWaitingQ.size()); 
   queueTimeRV.setValue(getTime() - 
c.getArrivalTime());    
   scheduleEndService(c); 
  } 
 } 
 
 class EndServiceListener implements JSL 
ActionListener  
 { 
  public void action(JSLEvent event) 
  { 
   myNumBusyServers--;  
   if (myWaitingQ.size() > 0 ) 
   { 
    Customer nc = 

 (Customer)myWaitingQ.getNext(); 
    scheduleBeginService(nc); 
   } 
  } 
 } 

 
After construction of the event listeners within the 
GGcEventModel constructor, the delegation event 
mechanism requires that event listeners know which events 
to process.  This can be accomplished when the event is 
scheduled.  For example, the methods schedule 
Arrival(), scheduleBeginService(), and  

scheduleEndService() construct events and assign 
the appropriate listeners. 
 

 private void scheduleArrival() 
 { 
  double t = 
myArrivalDistribution.sample(); 
  JSLEvent temp = 
scheduleEvent(myArrivalListener, t); 
  temp.setName(�Arrival�); 
 } 
 
 private void scheduleBeginService(Customer 
c) 
 { 
  JSLEvent temp = scheduleEvent(myBegin 
ServiceListener, 0.0, JSLEvent.DEFAULT_ 
PRIORITY, c);    
    
  temp.setName(�Begin Service�); 
 } 
  
 private void scheduleEndService(Customer c) 
 { 
  double t = myServiceDistribution. 
sample(); 
  JSLEvent temp = scheduleEvent(myEnd 
ServiceListener, t, 
JSLEvent.DEFAULT_PRIORITY, c);   
  temp.setName(�End Service�); 
 } 

 
As one can see, the use of Java here is not conceptually any 
different from the use of other languages.  The JSL 
automatically collects statistics, manages the event list, and 
allows for random number generation.  In support of the 
event view paradigm, the JSL allows the events to be 
encapsulated within the class of interest (e.g. 
GGcEventModel). 

The advantages for using Java for the implementation 
of the process view of simulation have already been 
exploited by a variety of other tools; see Healy and Kilgore 
(1997).  In this example, we illustrate how the 
implementation of the Simfone′ framework in the JSL 
allows easy modeling via processes and resources.  Again 
in this case the user must develop a class to model the 
system.   In the setup() method, the resource is 
allocated and a call to the static method of the 
GGcCustomer class is made to initialize statistical 
collection.  The initialize() method begins the 
scheduling of arrivals.  In the ArrivalListener class a 
GGcCustomer is created and activated.  In addition, the 
next arrival is scheduled.  This arrival creation and 
scheduling logic could have also been easily incorporated 
into the GGcCustomer class. 

 
public class GGcProcessModel extends Model 
{ 
 public GGcProcessModel() 
 { 
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  this(1,new Exponential(1.0), new 
Exponential(0.9)); 
 } 
   
 protected void setUp(Experiment exp) 
 {   
  myResource = new Resource(�GGC 
Resource�, myNumServers); 
  myResource.addToExperiment(); 
  myResource.addToModel(); 
  GGcCustomer.setUpStats(); 
 } 
  
 protected void initialize(Experiment exp) 
 { 
  GGcCustomer.resetCount(); 
  scheduleArrival(); 
 } 
  
 private void scheduleArrival() 
 { 
  double t = 
myArrivalDistribution.sample(); 
  scheduleEvent(myArrivalListener, t); 
 } 
  
 class ArrivalListener implements JSLAction 
Listener 
 { 
  public void action(JSLEvent event) 
  { 
   GGcCustomer c = new GgcCustomer 
(myServiceDistribution, myResource); 
   
   c.activate();   
   scheduleArrival(); 
  } 
 } 
} 

 
In the process view of simulation, one traces the path 

of the life of an entity of interest through the system.  The 
GGcCustomer class does that using the constructs available 
within the Process class.  The following code fragment 
illustrates how to do this using the JSL.  The response 
variables have been defined a static variable because they 
represent statistics across all the instances of the class 
GGcCustomer.  The key methods within the process class 
are indicated in bold.  A customer may wait for a request to 
be fulfilled from a resource.  If the request is not 
immediately fulfilled, then the thread of control for this 
process stops and the JSL event scheduling mechanism 
takes over to find the next event.  Once the request can be 
fulfilled, the request is returned to the customer. The 
waitfor() method is again used to implement a wait for 
the completion of an activity.  After the activity is 
completed, the release method of the resource is called 
with the appropriate request.  This implementation is 
similar in some respects to the waitfor method found in 
MODSIM.   In addition, the functionality of the process 
class is essentially equivalent to that available within the 
industrial strength Silk environment presented by Healy 
and Kilgore (1997).  The JSL again manages the execution 

of the simulation including the appropriate use of Java�s 
threads. 

 
public class GGcCustomer extends Process 
Adapter 
{  
 public GGcCustomer(Distribution d, Resource 
r) 
 { 
  super(�Customer� + count); 
  count++; 
  setServiceActivity(d); 
  setResource(r); 
  timeOfArrival = getTime(); 
 } 
   
 public void process() throws Process 
TerminatedException 
 { 
  double arriveTime;   
  arriveTime = getTime();  
   
  queueLengthRV.increment();   
  Request r = waitfor(myResource); 
  
  queueLengthRV.decrement();   
  queueTimeRV.setValue(getTime()-
arriveTime);   
  waitfor(myServiceActivity);  
  myResource.release(r); 
 } 
  
// setup methods etc. 
 
 private double timeOfArrival; 
  
 private Activity myServiceActivity; 
 private Resource myResource; 
 private static int count = 1;   
  
 public static ResponseVariable queueTimeRV; 
 public static TimeWeighted queueLengthRV; 
} 
 

5 CONCLUSIONS 
 
In this paper, we have presented an overview of an object-
oriented simulation framework called Simfone′.   The 
Simfone′ framework was developed to gain a better 
understanding of the requirements of a generic object-
oriented framework for simulation modeling.   Through a 
detailed object-oriented analysis and design effort, we hope 
that a framework can be established to allow the 
development of simulation libraries in any object-oriented 
language.  Work is continuing on this effort, including a 
more detailed examination of the dynamic modeling 
requirements for such a framework.  This would include an 
explanation through state diagrams and interaction 
diagrams of the key dynamic issues needed for simulation 
modeling.  In addition, we are continuing our evaluation of 
the static structures within the framework.  A key emphasis 
of this analysis is the use of interfaces and patterns to 
provide flexibility to the modeling constructs. 
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In addition to the Simfone′ framework, we briefly 
illustrated how simple simulation models can be developed 
using a Java implementation of the framework.  Complete 
versions of the above models have been implemented, 
verified, and tested.  Additional development work is in 
progress on the JSL.  We are currently examining the 
efficiency issues related to thread management within the 
process view.  After additional testing, the JSL will be 
released to the public domain via open software foundation 
licensing.  The JSL represents just one instantiation of the 
Simfone′ framework.  As the work continues on the 
framework, we expect that implementations in other 
languages will be possible.    We see this effort as an 
iterative process and invite the interested reader to assist us 
in establishing a well-documented and comprehensive 
object-oriented framework for simulation. 
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