
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

SIMFONE′′′′: AN OBJECT-ORIENTED SIMULATION FRAMEWORK

Manuel D. Rossetti

Department of Industrial Engineering
4207 Bell Engineering Center

University of Arkansas
Fayetteville, AR 72701, U.S.A.

Ben Aylor
Ryan Jacoby

Alyson Prorock
Antoine White

Department of Systems Engineering

Thornton Hall
University of Virginia

Charlottesville, VA 22903, U.S.A.

ABSTRACT

This paper presents an overview of a software design
framework for the development of object-oriented
simulations. The framework is documented using the
Unified Modeling Language (UML) and is divided into
packages to organize the collection of classes into
important functional areas. The purpose of the framework
is two-fold. First, the framework is useful in understanding
the concepts and abstractions within simulation modeling
and languages. Secondly, the framework can serve as the
basis for the development of object-oriented simulation
libraries. We illustrate the latter through a Java
implementation.

1 INTRODUCTION

According to Booch et al. (1999), a software design
framework is �an architectural pattern that provides an
extensible template for applications within a domain.� A
framework provides a set of abstract and concrete classes
that can be extended via sub-classing or used directly to
solve a particular problem within a particular domain. This
paper discusses a software design framework for object-
oriented simulations. A framework can ease the work of
researchers, educators, and practitioners. An object-
oriented simulation framework can provide a better
understanding of key abstractions within simulation
modeling and can provide a blueprint for the development
of object-oriented simulation libraries.
 Numerous organizations and individuals have
developed object-oriented simulations tools. These tools
have been implemented using languages such as C, C++,
and, recently, Java; however, there is very little
documentation in the literature describing the common
abstractions used within these tools. For example, Hirata

and Paul (1998) describe a method for developing object-
oriented designs for simulation. The article does not
emphasize the underlying framework, but instead, focuses
on the process of design. Other object-oriented simulation
tools or packages include SIMEX (1998), a set of C++
classes for performing dynamic population simulations,
Schwetman�s (1986) CSIM++ an extensive set of classes
for performing process and event based simulations in
C++, and Joines and Roberts� YANSL (1996) which
supports the development of C++ simulations using the
network modeling view. In addition, Healy and Kilgore
(1997) describe Silk, a comprehensive extension of the
Java simulation language for developing process-oriented
simulations. Finally, MODSIM, Mullarney (1997), is a
complete simulation language developed explicitly for the
object-oriented modeling of complex, dynamic systems.
 Our emphasis in this paper is to propose and present a
framework that can serve as the basis for the development
of simulation libraries in any language. At this point our
framework is not intended to be the definitive framework
for object-oriented simulation modeling; however, our
purpose is to spur further development and documentation
of such a framework so that the duplication of effort that
occurs in every simulation language development effort
can be mitigated and that some standardization can take
place between these efforts.
 Since the framework is presented as a set of Unified
Modeling Language diagrams, we begin with a basic
introduction to reading these diagrams. The paper then
discusses the key packages within the framework. This
will primarily consist of an explanation of the abstractions,
their intended behaviors, and how they interact with each
other. Finally, to make the framework more concrete, we
present a limited implementation of the framework in Java
with examples of event and process modeling.

1855

Rossetti, Aylor, Jacoby, Prorock, and White

2 UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML) is a modeling
language for the conceptual and physical representation of
object-oriented systems. The language is general enough to
include both software intensive systems as well as general
systems modeling. The UML contains a set of graphical
symbols (notation) and a well defined set of semantics for
specifying precise object-oriented models. An object-
oriented model contains such abstractions as classes,
attributes, operations, objects, associations, states, etc. The
UML is based on a detailed meta-model of these abstrac-
tions that precisely defines their meanings and how they
relate to each other. For further details of the UML�s meta-
model, we refer the interested reader to the Object
Management Group�s UML version 1.3 specification at
<www.omg.org/cgi-bin/doc?ad/99-06-
08.pdf>.
 The UML allows the development of various models
of a system in the form of diagrams to represent key view
points just as different blueprints of a house examine
important aspects such as the electrical, water, and
structural components. The primary modeling view used
in this paper is the structural view. We primarily use class
diagrams to show a set of classes and their relationships.
UML also contains a rich set of behavioral diagrams to
specify the dynamic aspects of a system.

The static structure of a system can be visualized in
the form of a class diagram. A class describes a group of
objects with similar properties (attributes), common
behavior (operations), common relationships to other
objects, and common semantics. A class diagram
illustrates the relationships between classes through
associations. An association describes a group of links
with common structure and semantics. A link is simply a
physical or conceptual connection between object
instances.

Figure 1 presents a generic class diagram. Each class
is indicated with a rectangle divided into three areas for the
class name, attributes and operations. An object attribute
is a named property of a class that describes a value held
by each object of the class. Each class can have some
operations. An operation is the implementation of a
service that can be requested from any object of the class.
Operations affect the behavior of an object instance.
Associations are indicated by an adorned line between
classes.

In the figure, SubClass1 specializes the more general
ParentClass as indicated with the arrow between SubClass1
and ParentClass. The generalization/specialization
relationship is typically implemented using the inheritance
features of a language. An association exists between
Class1 and Class2. This is indicated in the figure by the
line labeled Association between Class1 and Class2. Each
end of an association is adorned with the multiplicity of the

relationship. Multiplicity indicates the number of instances
of one class that may relate to a single instance of an
associated class. When reading an association, the class
you begin with is called the source. The class you traverse
to is called the target. The association between Class1 and
Class2 would be read as follows. Each instance of Class1 is
associated with zero or more (0..*) instances of Class2.
Each instance of Class2 is associated with exactly 1
instance of Class1. Another association exists between
SubClass1 and Class2. In this case, this association has
attributes and operations. The class AssociationClass
describes the set of links between SubClass1 and Class2.
The instances of an association class are objects but they
derive their identity (existence) from instances of the
participating classes. Aggregation is a form of association
that is used to represent the �part of� association. The
whole is called the assembly, aggregate, or composite. The
parts are called parts or components. An aggregation is
indicated with a diamond on the end of the associate that is
the aggregate. Identifying a relationship as an aggregation
has implications during the implementation phase of
design. Further detail can be added to the model through
the use of an attached note as indicated in Figure 1.

This is an
attached note

AssociationClass

attribute1
attribute2

operation1()
operation2()

rolename2

0..*

rolename1

0..*

SubClass1

attribute1
attribute2

operation1()
operation2()

ParentClass

attribute

operation()

is a specialization of

Class1

attribute1
attribute2

operation1()

1

0..*

Class3

attribute1

operation1()

Class2

attribute1
attribute2

operation1()
0..*0..*

1

0..*

Association

1..*

Aggregation

1..*

Figure 1: Generic Class Diagram

We have only touched on parts of the UML

specification. The UML is the recommended standard for
specifying object-oriented systems. As such, it will be
increasingly important that simulationists understand the
language. The UML can be used to model simulations,
enterprise information systems, real-time systems, and
other software applications. The UML can be used for
modeling, documentation, visualizing, specifying and with
code generation even constructing software programs. The
power of UML is in achieving a standardized
communication medium. A complete description of the
UML is beyond the scope of this paper. We refer the
interested reader to Larman (1998) or Booch et al. (1999)
for further information on the UML.

1856

Rossetti, Aylor, Jacoby, Prorock, and White

3 SIMFONE′′′′ PACKAGES

The SIMFONE′ (simulation framework one) represents a
proposed framework for the development of object-
oriented simulation libraries. SIMFONE′ (pronounced
symphony) is currently divided into six main packages
pertaining to:

• Simulation management
• Simulation executive
• Processes
• Resources and queues
• Random number generation
• Statistics

Additional utility and support packages are also necessary
when developing a specific language implementation. This
paper will concentrate on the simulation management,
simulation executive, and the process package. We will
briefly discuss the other packages to highlight their main
structures.

3.1 Simulation Management Package

The simulation management package contains classes that
are used in the development of the simulation including
modeling and experimentation. The class Simulation
provides for the overall coordination of the simulation run.
The Simulation class requires an experiment, a model, and
a scheduler to perform its work. The Simulation class acts
as a mediator between the Experiment, Model, and
SchedulerIfc classes. In addition, it also controls the
reporting of replication results, final summary results, and
the start, stopping, and pausing of the simulation run.

A key class in this package is SimObject. The
SimObject class represents those objects within a
simulation that can participate in event scheduling and that
can be included in a model. Instances of SimObject can
schedule and cancel events and can be added or deleted
from a model. They not only schedule events but also
process the events when the time of the event occurs. They
can be setup at the beginning of an experiment, initialized
at the beginning of each replication, and warmed up
individually. They can also react to the beginning of a
replication and to the end of a replication.

The Model class is a subclass of SimObject. This
allows a model to schedule and respond to events. A Model
is a representation of a system with the intention to predict
the system�s behavior when certain events occur. A Model
manages the addition and/or removal of SimObjects;
therefore, the Model can be composed of one or more
object of type SimObject. An instance of Model is
necessary for an object of type Simulation to be created.

The class Experiment represents the information
necessary for the control of a replication of an experiment.

An experiment has a specified number of replications, the
starting and ending times for the replications, and a warm
up time to be applied to each replication. A set of zero or
more response variables can be attached to an experiment.
A response variable is a variable of interest within the
experiment that can be recorded across replications. A
response variable is a subclass of SimObject. This allows
response variables to schedule and handle events,
especially those events that represent the beginning and
ending of the simulation replication. Although not shown
in this diagram, an experiment can also have a set of input
factors attached to it.

0..*

SimObject
name
endTime
warmUpTime

setup()
initialize()
getTime()
processEvent()
dispatchEvent()
scheduleEvent()
cancelEvent()
beforeReplication()
afterReplication()
addToModel()
deleteFromModel()
warmUpAction()
endEventAction()

Model
addSimObject()
removeSimObject()
setUpSimObjects()

0..*

SchedulerIfc
start()
pause()
stop()
beforeEvent()
executeEvents()
schedule()
cancel()
cancelAllEvents()
initialize()
getTime()

<<interface>>
0..*

ResponseVariable
name
initialValue
currentValue

initialize()
addObserver()
deleteObserver()

Simulation
start()
pause()
stop()
turnOnReplicationReport()
turnOnSummaryReport()
turnOnTraceReport()

Experiment
numReplications
startTime
endTime
warmUpTime

beforeReplication()
afterReplication()
addResponseVariable()
removeResponseVariable()

0..*

Figure 2: Simulation Management Class Diagram

The SchedulerIfc interface defines the behaviors

expected of the simulation executive. The primary purpose
of this class is the time ordered execution of events. The
Simulation class delegates to an instance of a class that
implements the SchedulerIfc interface to control the events
during a replication.

3.2 Simulation Executive Package

The simulation executive package, shown in Figure 3,
manages the execution of events. When a simulation
object wishes to have some action occur at some point in
the simulated future, the object will notify the scheduler of
the time the action should occur and the type of the action.
The Scheduler Package manages these future events in
chronological order and performs the requested actions at
the specified times.

1857

Rossetti, Aylor, Jacoby, Prorock, and White

ActionListener
action()

<<interface>>

execute()
{ dispatcher.dispatchEvent(this)
}

SchedulerIfc
<<interface>>

CalendarIfc
add()
cancel()
clearCalendar()
isEmpty()
popNext()

<<interface>>

JSLScheduler

implements

listener

EventListener
<<interface>>

0..*

0..*

PriorityCalendar

implements

0..*

Event
priority
name
identifier
time
type
cancelledFlag

execute()

0..*

0..*

dispatcher

0..*

SimObject
name

getTime()
processEvent()
dispatchEvent()
scheduleEvent()
cancelEvent()

0..*

ProcessEventProcess

0..*

Figure 3: Simulation Executive Package

The Simfone′ framework has been designed with the

goal of allowing multiple implementations of simulation
schedulers. This will enable simulation scheduling
algorithms to be easily evaluated. Any new scheduling
algorithm simply must implement the behavior contained
in the ScheduleIfc class. The class JSLScheduler is an
example of this for a Java implementation. In addition, an
interface to represent the simulation calendar has been
defined such that different calendar implementations can
be easily interchanged as long as the CalendarIfc interface
is implemented. The class PriorityCalendar is a concrete
class that implements a simulation calendar within our Java
implementation. It is based on the use of data structures
available within the Java Generic Library.

The class Event represents a simulated event. A
simulated event can have a priority, a type, a time, and a
unique identifier. While time is the primary means by
which events can be ordered, the current definition allows
ordering via priority, type, and order of creation. These
attributes are useful for the implementation of general
scheduling algorithms.

The framework uses a delegation-based event
processing model. Objects of type SimObject have the
ability to schedule events. This creates an instance of type
Event and places the event on the schedule. When the
event�s execute method is called the event calls back to a
SimObject that is acting as its dispatcher. The dispatcher
processes the event by sending the event to an event
listener that has been registered to handle that type of
event. The event listener then invokes the appropriate
action for the event.

3.3 Process Package

The process package, shown in Figure 5, consists of those
classes necessary to implement the process view of
simulation. The process package interacts primarily with

the Simulation Management package. A process can be
used to represent the life of a simulated object. The
abstract class Process has methods that allow transitions
between states that are mapped to the life of the object.

Process

startTime
priority

process()
activate()
reactivate()
suspend()
resume()
interrupt()
terminate()
waitfor()

<<abstract>>

Figure 4: Process Class

SimObject

Active

Inactive

Interrupted

CancelledSuspendedState

TerminatedState

ActivityDelayedState

ResourceWaitStateConditionalWaitState ExecutingState

ReadyState

0..1

Distribution

ActivityState

0..*

current 0..1

Activity

0..1

ProcessState

Process
<<abstract>>

0..*

0..1

InterruptedState

Figure 5: Process Package

A Process allows the simulation of elapsed time within

its process() method. The process() method
contains calls that may interact with resources and
activities to model the life or sequence of activities
associated with a simulated object. A process may
waitfor() a resource to become available, for an
activity to be completed, and for a condition to become
true. A process interacts with the Scheduler through its
methods inherited from SimObject.

Within a process view implementation of this design,
pseudo-parallelism, i.e. the appearance of concurrent
multiple simulated objects interacting through time, must
be considered. A variety of techniques exist to implement
the process view. Traditional simulation languages such as
SIMAN and SLAM present a process view essentially by
defining functions for every language construct, even if-
then statements. A process is defined by a set of function
calls. The state of the process essentially becomes the
current function call. This has disadvantages in terms of
the lack of local variables and is inherently not an object-
oriented approach. Other languages such as Simscript II.5
and MODSIM use a co-routine facility to save the state of
the process. This is dependent upon a compiler

1858

Rossetti, Aylor, Jacoby, Prorock, and White

implementation of these facilities. CSIM++ relies on a
similar implementation through the use of preprocessing.
If the underlying language supports multi-threading either
directly as in Java or indirectly through a thread package
(e.g. POSIX) then the process view can be implemented
via threads. The point is the mechanism by which the
pseudo-parallelism is implemented should be presented as
layer of abstraction between a simulation modeling
framework and its implementation. Although our
framework is not dependent upon a thread-based
implementation our example in Java assumes the
availability of a thread framework.
 The ProcessState class and its subclasses
(SuspendedState, TerminatedState, ActivityDelayedState,
ResourceWait State, ConditionalWaitState, ExecutingState,
ReadyState) model the states that a process may be in during
its life via the State pattern. See Gamma et al. (1995) for
additional information on patterns in software design. The
states that a process can be in are illustrated in Figure 6. The
ReadyState represents a process that has been initialized and is
ready to begin its life. The ActivityDelayedState represents
when the process is delayed waiting for an activity to
complete. The InterruptedState represents when a process has
been interrupted during an activity delay. The
SuspendedState represents when the activity has suspended
itself waiting for a reactivation from a different process. The
ConditionalWaitState represents when an activity is waiting
for a condition in the model to become true. The
ResourceWaitState represents when a process is blocked
waiting for a resource to be available. The ResourceWaitState
is actually a special case of a ConditionalWaitState; however,
since waiting for a resource is such a common formalism in
simulation, we decided to present it as a separate class to
allow for potential implementation optimizations. The
ExecutingState represents when a process is not blocked or
delayed. The TerminatedState represents when a process�s
life cycle has completed.

ReadyState

ExecutingState

ConditionalWaitState

ResourceWaitState

ActivityDelayedState

SuspendedState

InterruptedState

TerminatedState

new

*reactivate(t)

resourceAvailable

suspend

conditionSatistfied

suspend

terminate

*resume

terminate

*interrupt

activityCompleted

suspend

waitfor(Condition c)

waitfor(Resource r)

waitfor(Activity a)

*activate(t)

suspend

The terminated state may also be reached
from ConditionalWait, ActivityDelayed, and
ResourceWait

* causes an
event to be
scheduled

schedules event for
activity's remaining time
since interrupt

Figure 6: Process States

InactiveState

ActiveStateInterruptedState

CancelledState

new

start
resume

cancel

interrupt cancel

inactivate

Figure 7: Activity States

3.4 Resource and Queue Packages

The Resource Package, shown in Figure 8, is designed to
model the general allocation of resources in complex
systems. Specifically, this package provides a default
design for the modeling of reusable system capacity
through Resources, Requests, and Queues. The Resource
class handles all service requests and allocation of
capacity. The Request class stores information pertinent to
an individual request for a Resource, such as the amount of
the Resource requested and the current state of the
Request. Classes that want to make requests for resources
must implement the RequestorIfc. The Resource class
allocates capacity to requests by placing them in a service
queue or if no capacity exists into a waiting queue. The
Resource class works with classes that implement the
QueueIfc. This allows different queueing disciplines to be
implemented in concrete classes such as the FIFOQueue.
The QueueIfc works with classes that implement the
QObjectIfc such as the QObject. Objects of type Request
are sub-classed from QObject so that requests can be held
in queues.
 An Activity represents a duration of simulated time
that a process may experience. The states of an activity
(Inactive, Active, Interrupted, Cancelled) are also modeled
with the State pattern via subclasses of ActivityState.

3.5 Random Number Package

A simulation framework would be incomplete without a
random number package. An example hierarchy for
distributions is given in Figure 9. The random number
generation functionality should be factored out of the
distribution hierarchy via delegation. The distributions can

1859

Rossetti, Aylor, Jacoby, Prorock, and White

delegate random number generation to a class that
implements the random number generator interface
(RNGIfc) when calling their individually implemented
sample() methods. In this way, different random
number generators can be used as long as they implement
the RNGIfc such as done by JSLRNG.

FIFOQueue

QObjectIfc

getTimeStamp()
setTimeStamp()
getPriority()

QObject

JSLProcess

RequestorIfc

requestCancelled()
requestCompleted()
requestDequeued()
requestQueued()
requestSatisfied()

implements

Request

name
creationTime
queueTime

seize()
release()
cancel()
queue()
dequeue()

inservice waiting

QueueIfc

enqueue()
peekNext()
removeNext()
remove()
length()

implements

Resource

capacity
numberWaiting
numberAvailable

handleArrivingRequest()
placeRequestInService()
placeRequestInWaitQ()
satisfyNextRequest()

implements

Figure 8: Resource Package

Discrete Continuous

JSLRNG

Bernoulli

Binomial

DiscreteUniform

Poisson

Exponential Erlang

GammaNormalUniform Triangular

Weibull

Constant

RNGIfc

nextDouble()
setSeed()

Distribution

name
stream

sample()
pdf()
cdf()
mean()
variance()implements

Figure 9: Random Package

3.6 Statistics Package

The collection of statistics is accomplished in the statistics
package, shown in Figure 10. Because of the concept of
response variables, our statistics package is minimal. The
ResponseVariable class is sub-classed into count based

responses (Counter), observational responses (Tally), and
time persistent responses (TimeWeighted). These classes
appropriately override the setValue() method. The
setValue() method performs the updating of the value
of the response variable and its weight. In addition, it is
responsible for notifying any observers of changes to the
response variable. An instance of type Statistic can be an
observer of a response variable since it extends the abstract
class RVObserver. Additional observers can be defined
such as dynamic charts. The Statistics class can be further
subclassed to implement specialized estimators such as
batch means and time series.

TimeWeighted

lastValue

setValue()
initialize()
increment()
decrement()

public setValue(double v, double w)
{ value = v;
timeOfLastSet = getTime();
weight = w;
notifyObservers();
}

Tally
Counter

0..* Experiment

addResponseVariable()
deleteResponseVariable()

default

Statistic

name
value
weight
num
sum
sumsq
sumweights
min
max

getAverage()
getMeanSquare()
getSampleVariance()
getSampleStdDev()
getSum()
getSumOfSquares()
getCount()
collect()

ResponseVariable

name
initialValue
weight
timeOfLastSet

setValue()
getValue()
getWeight()
initialize()
notifyObservers()
addObserver()
deleteObserver()

0..*

RVObserver

reset()
update(

<<abstract>>

public notifyObservers()
{
for each observer
call update(this)
}

Figure 10: Statistics Package

4 JAVA IMPLEMENTATION EXAMPLE

In this section, we present an implementation of a simple
G/G/c queueing simulation in Java. The Simfone′
framework was implemented into a class library to support
simulation in Java. The library is called the Java
Simulation Library (JSL), pronounced �jissle�. A
complete discussion of the implementation of the JSL is
beyond the scope of this paper; however, its functionality
is based on the already discussed Simfone′ framework.
Our intention is to provide enough detail so that the reader
can make the above concepts more concrete.

We will first illustrate how to model a M/M/1 queue
with the event view within JSL and then illustrate how the
same system can be modeled using the process view. To
begin the event view model, we must extend a class from
the Model class. In this example, we have created a
general model of a G/G/c queue. The constructor takes in
a parameter for the number of servers, the arrival
distribution, and the service distribution. The default
constructor makes a M/M/1 model with the mean time

1860

Rossetti, Aylor, Jacoby, Prorock, and White

between arrivals equal to 1 and the mean service time
equal to 0.5. The Exponential class is used to create the
appropriate distributions that are passed into the model.

public class GGcEventModel extends Model
{
 public GGcEventModel()
 {
 this(1,new Exponential(1.0), new Expo-
nential(0.5));
 }

 public GGcEventModel(int numServers,
Distribution arrivals, Distribution service)
 {
// constructor logic here
 }
// method and variable definitions here
}

In a main application class, the user must create the model.

public class Application
{
 public static void main(String args[])
 {
 double arrivalMean = 1.0;
 double serviceMean = 0.5;
 int numServers = 1;
 int numReps = 5;
 double simLength = 1000.0;

 Project project = new Project
(�Rossetti�, �GGc Test�);
 Experiment exp = new Experiment
(numReps, simLength);
 GGcEventModel model = new GgcEvent-
Model(numServers, new Exponential
(arrivalMean), new Exponential(serviceMean));

// GGcProcessModel model = new
GGcProcessModel(numServers, new
Exponential(arrivalMean), new
Exponential(serviceMean));

Simulation sim =
project.makeSimulation(model, exp);

 sim.start();
 }

}

In the application, a project is created, an experiment

is created and then the model is created. The project is
then told to make a simulation given the model and the
experiment. This ensures that the model, project,
simulation, and experiment are properly allocated and their
associations are properly created. Then the simulation is
told to start().

The GGcEventModel begins by accepting the
parameters of the model and then builds the event listeners
for events. Every model has two methods for initializing
its state. The method setup() is called before the first
replication and allocates the response variables

(queueTimeRV and queueLengthRV) and adds them
to the experiment. The method initialize() is called
before each replication and can be used to set the state of
the system before each replication.

public class GGcEventModel extends Model
{
 public GGcEventModel()
 {
 this(1,new Exponential(1.0), new
Exponential(0.5));
 }

 public GGcEventModel(int numServers,
Distribution arrivals, Distribution service)
 {
 setNumberOfServers(numServers);
 setServiceDistribution(service);
 setArrivalDistribution(arrivals);
 setName(�GGcEventModel�);
 myArrivalListener = new Arrival
Listener();
 myBeginServiceListener = new Begin
ServiceListener();
 myEndServiceListener = new EndService
Listener();
 myNumBusyServers = 0;
 }

 // get/set methods would be here

 public void setUp()
 {
 queueTimeRV = new ResponseVariable
(�Queue Time�);
 queueLengthRV = new TimeWeighted
(�Queue Length�);
 queueTimeRV.addToExperiment();
 queueLengthRV.addToExperiment();

 myWaitingQ = new FIFOQueue(�GGC Q�);

 myWaitingQ.addToExperiment();
 }

 public void initialize()
 {
 // empty and idle
 myWaitingQ.clear();
 myNumBusyServers = 0;
 // start the arrivals
 scheduleArrival();

}

In the following code snippet, the ArrivalListener

class�s action method creates an object of type Customer.
The Customer class is simply a class to represent
customers with the primary purpose of tagging their arrival
times. For brevity the class is not shown here. The
ArrivalListener enqueues the customer, adjusts the
response variable, and checks to see if the customer can
begin service. In addition, it schedules the next arrival.
The BeginServiceListener increments the number of busy
servers, removes the customer from the waiting queue,
adjusts the values of the response variables, and schedules

1861

Rossetti, Aylor, Jacoby, Prorock, and White

the end of service. The EndServiceListener decrements the
number of busy servers and checks to see if any additional
customers are waiting. If so, the customer is scheduled to
begin service.

 class ArrivalListener implements JSLAction
Listener
 {
 public void action(JSLEvent event)
 {
 Customer c = new Customer();

 myWaitingQ.enqueue(c);

 queueLengthRV.setValue(myWaitingQ.size());

 if (myNumBusyServers < myNum
Servers)
 scheduleBeginService(c);

 scheduleArrival();

 }
 }

 class BeginServiceListener implements JSL
ActionListener
 {
 public void action(JSLEvent event)
 {
 myNumBusyServers++;

 Customer c =

(Customer)myWaitingQ.removeNext();

 queueLengthRV.setValue(myWaitingQ.size());
 queueTimeRV.setValue(getTime() -
c.getArrivalTime());
 scheduleEndService(c);
 }
 }

 class EndServiceListener implements JSL
ActionListener
 {
 public void action(JSLEvent event)
 {
 myNumBusyServers--;
 if (myWaitingQ.size() > 0)
 {
 Customer nc =

 (Customer)myWaitingQ.getNext();
 scheduleBeginService(nc);
 }
 }
 }

After construction of the event listeners within the
GGcEventModel constructor, the delegation event
mechanism requires that event listeners know which events
to process. This can be accomplished when the event is
scheduled. For example, the methods schedule
Arrival(), scheduleBeginService(), and

scheduleEndService() construct events and assign
the appropriate listeners.

 private void scheduleArrival()
 {
 double t =
myArrivalDistribution.sample();
 JSLEvent temp =
scheduleEvent(myArrivalListener, t);
 temp.setName(�Arrival�);
 }

 private void scheduleBeginService(Customer
c)
 {
 JSLEvent temp = scheduleEvent(myBegin
ServiceListener, 0.0, JSLEvent.DEFAULT_
PRIORITY, c);

 temp.setName(�Begin Service�);
 }

 private void scheduleEndService(Customer c)
 {
 double t = myServiceDistribution.
sample();
 JSLEvent temp = scheduleEvent(myEnd
ServiceListener, t,
JSLEvent.DEFAULT_PRIORITY, c);
 temp.setName(�End Service�);
 }

As one can see, the use of Java here is not conceptually any
different from the use of other languages. The JSL
automatically collects statistics, manages the event list, and
allows for random number generation. In support of the
event view paradigm, the JSL allows the events to be
encapsulated within the class of interest (e.g.
GGcEventModel).

The advantages for using Java for the implementation
of the process view of simulation have already been
exploited by a variety of other tools; see Healy and Kilgore
(1997). In this example, we illustrate how the
implementation of the Simfone′ framework in the JSL
allows easy modeling via processes and resources. Again
in this case the user must develop a class to model the
system. In the setup() method, the resource is
allocated and a call to the static method of the
GGcCustomer class is made to initialize statistical
collection. The initialize() method begins the
scheduling of arrivals. In the ArrivalListener class a
GGcCustomer is created and activated. In addition, the
next arrival is scheduled. This arrival creation and
scheduling logic could have also been easily incorporated
into the GGcCustomer class.

public class GGcProcessModel extends Model
{
 public GGcProcessModel()
 {

1862

Rossetti, Aylor, Jacoby, Prorock, and White

 this(1,new Exponential(1.0), new
Exponential(0.9));
 }

 protected void setUp(Experiment exp)
 {
 myResource = new Resource(�GGC
Resource�, myNumServers);
 myResource.addToExperiment();
 myResource.addToModel();
 GGcCustomer.setUpStats();
 }

 protected void initialize(Experiment exp)
 {
 GGcCustomer.resetCount();
 scheduleArrival();
 }

 private void scheduleArrival()
 {
 double t =
myArrivalDistribution.sample();
 scheduleEvent(myArrivalListener, t);
 }

 class ArrivalListener implements JSLAction
Listener
 {
 public void action(JSLEvent event)
 {
 GGcCustomer c = new GgcCustomer
(myServiceDistribution, myResource);

 c.activate();
 scheduleArrival();
 }
 }
}

In the process view of simulation, one traces the path

of the life of an entity of interest through the system. The
GGcCustomer class does that using the constructs available
within the Process class. The following code fragment
illustrates how to do this using the JSL. The response
variables have been defined a static variable because they
represent statistics across all the instances of the class
GGcCustomer. The key methods within the process class
are indicated in bold. A customer may wait for a request to
be fulfilled from a resource. If the request is not
immediately fulfilled, then the thread of control for this
process stops and the JSL event scheduling mechanism
takes over to find the next event. Once the request can be
fulfilled, the request is returned to the customer. The
waitfor() method is again used to implement a wait for
the completion of an activity. After the activity is
completed, the release method of the resource is called
with the appropriate request. This implementation is
similar in some respects to the waitfor method found in
MODSIM. In addition, the functionality of the process
class is essentially equivalent to that available within the
industrial strength Silk environment presented by Healy
and Kilgore (1997). The JSL again manages the execution

of the simulation including the appropriate use of Java�s
threads.

public class GGcCustomer extends Process
Adapter
{
 public GGcCustomer(Distribution d, Resource
r)
 {
 super(�Customer� + count);
 count++;
 setServiceActivity(d);
 setResource(r);
 timeOfArrival = getTime();
 }

 public void process() throws Process
TerminatedException
 {
 double arriveTime;
 arriveTime = getTime();

 queueLengthRV.increment();
 Request r = waitfor(myResource);

 queueLengthRV.decrement();
 queueTimeRV.setValue(getTime()-
arriveTime);
 waitfor(myServiceActivity);
 myResource.release(r);
 }

// setup methods etc.

 private double timeOfArrival;

 private Activity myServiceActivity;
 private Resource myResource;
 private static int count = 1;

 public static ResponseVariable queueTimeRV;
 public static TimeWeighted queueLengthRV;
}

5 CONCLUSIONS

In this paper, we have presented an overview of an object-
oriented simulation framework called Simfone′. The
Simfone′ framework was developed to gain a better
understanding of the requirements of a generic object-
oriented framework for simulation modeling. Through a
detailed object-oriented analysis and design effort, we hope
that a framework can be established to allow the
development of simulation libraries in any object-oriented
language. Work is continuing on this effort, including a
more detailed examination of the dynamic modeling
requirements for such a framework. This would include an
explanation through state diagrams and interaction
diagrams of the key dynamic issues needed for simulation
modeling. In addition, we are continuing our evaluation of
the static structures within the framework. A key emphasis
of this analysis is the use of interfaces and patterns to
provide flexibility to the modeling constructs.

1863

Rossetti, Aylor, Jacoby, Prorock, and White

In addition to the Simfone′ framework, we briefly
illustrated how simple simulation models can be developed
using a Java implementation of the framework. Complete
versions of the above models have been implemented,
verified, and tested. Additional development work is in
progress on the JSL. We are currently examining the
efficiency issues related to thread management within the
process view. After additional testing, the JSL will be
released to the public domain via open software foundation
licensing. The JSL represents just one instantiation of the
Simfone′ framework. As the work continues on the
framework, we expect that implementations in other
languages will be possible. We see this effort as an
iterative process and invite the interested reader to assist us
in establishing a well-documented and comprehensive
object-oriented framework for simulation.

ACKNOWLEDGMENTS

This work was originally supported through a grant for
undergraduate research projects from the USENIX
Association at <www.usenix.org>.

REFERENCES

Booch, G., Rumbaugh, J., and Jacobson, I. 1999. The

Unified Modeling Language User Guide, Addison-
Wesley.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, Massachusetts: Addison-
Wesley Publishing Company, Inc.

Healy, K. J. and R. A. Kilgore. 1997. Silk�: A Java-Based
Process Simulation Language. Proceedings of the
1997 Winter Simulation Conference, ed. S.
Andradóttir, K. J. Healy, D. H. Withers, and B. L.
Nelson, 475-482, Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Hirata, C.M. and Paul, R. J. 1996. Object-Oriented
Programming Architecture for Simulation Modeling,
International Journal in Computer Simulation, 6: 269-
287.

Joines, J.A. and S. D. Roberts. 1996. Design of object-
oriented simulations in C++. In Proceedings of the
1996 Winter Simulation Conference, ed. J. Charnes, D.
Morrice, D. Brunner, and J. Swain, 65-72. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Larman, C. 1998. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design,
Upper Saddler River, New Jersey: Prentice-Hall, Inc.

Mullarney, A., West, J., Belanger, R., & Rice, S. 1997.
ModSim Tutorial. La Jolla, CA: CACI Products
Company.

Nair, R.S., Miller, J.A., and Zhang, Z. 1996. A Java-Based
Query Driven Simulation Environment. Proceedings
of the 1996 Winter Simulation Conference, ed. D.
Morrice and J. Charnes, 786-793, Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

SIMEX, 1998. National Micropopulation Simulation
Resource, SIMEX Package, Minneapolis, Minnesota:
Division of Health Computer Sciences, University of
Minnesota, <www.nmsr.umn.edu/nmsr/>.

Schwetman, H., 1986. CSIM++: A C-Based, Process-
Oriented Simulation Language. Proceedings of the
1986 Winter Simulation Conference, ed. J. Wilson, J.
Henrikson, S. Roberts, 386-396, Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHIES

MANUEL D. ROSSETTI is an Assistant Professor in the
Industrial Engineering Department at the University of
Arkansas. He received his Ph.D. in Industrial and Systems
Engineering from The Ohio State University. His research
interests include the design, analysis, and optimization of
manufacturing, health care, and transportation systems
using stochastic modeling, computer simulation, and
artificial intelligence techniques. Dr. Rossetti is an
Associate Member of the Institute of Industrial Engineers
and a member of the IIE OR Division. Dr. Rossetti is also
a member of INFORMS and SCS. His email and web
addresses are <rossetti@comp.uark.edu> and
<www.uark.edu/~rossetti>.

BEN AYLOR, RYAN JACOBY, ALYSON
PROROCK, AND ANTOINE WHITE are former
undergraduate Systems Engineering students supported by
the USENIX grant. Ben made contributions to the
scheduling package. Ryan made contributions to the
resource and queue package. Alyson made contributions to
the random number and statistic packages and Antoine
made contributions to the simulation management
packages.

1864

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

