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Abstract 

This paper presents a two-echelon non-repairable spare parts inventory system that consists 

of one warehouse and m identical retailers and implements the reorder point, order quantity (R, 

Q) inventory policy. We formulate the policy decision problem in order to minimize the total 

annual inventory investment subject to average annual ordering frequency and expected number 

of backorder constraints. In order to solve the problem, we decompose the system by echelon 

and location, derive expressions for the inventory policy parameters, and develop an iterative 

heuristic optimization algorithm. Experimentation showed that our optimization algorithm is an 

efficient and effective method for setting the policy parameters in large-scale inventory systems. 
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1. Introduction 

Large multi-echelon, multi-item inventory systems usually consist of hundreds of thousands 

of stock keep units (SKUs). These SKUs can be classified into two main categories: 

consumables and repairables. Calculating the optimal inventory policy parameters for each SKU 

is a computational burden that necessitates the need for efficient policy setting techniques that 

reduce the computational time, and at the same time, improve the ability of inventory managers 

to more effectively manage the supply chain. Multi-echelon inventory systems are important to 

large corporations and to the military to support their operations.  

In large supply networks like Wal-Mart, and the US-Navy, thousands of SKUs are stocked at 

different inventory holding points (IHPs). These holding points might be at different echelons 

where the higher echelons supply the lower echelons. Each of these IHPs might follow different 

stocking policies resulting in decentralized control of the supply network. This case is most 

likely to occur when each of the locations that constitute the supply network are owned by 

different owners who are not willing to give control of their inventories to external parties. Under 

this case, each location might not take into consideration interactions with the other locations 

that might have a significant effect on the efficiency of the whole supply network as well as on 

each single location. On the other hand, if all of these locations are owned or managed by a 

centralized management system, a single inventory control system might be implemented. 

Previous research shows that tremendous improvements are attainable if a centralized inventory 

management system is considered for the entire supply network. This motivated building 

inventory models that consider the entire supply network and the interactions between their 

constituent IHPs. Most of these models have their own assumptions and characteristics. Some of 
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these models, as we will see in the next section, are built for a special class of supply networks 

such as slow moving and expensive spare part supply networks. Other models are built for a 

particular structure of a supply network that might not be applicable to other supply networks. 

Hence, modeling multi-echelon inventory systems is still a rich area for research. 

In this research, we model a two echelon inventory system that implements (R, Q) policies at 

each IHP at each echelon. We consider a centralized inventory management system under which 

interactions between IHPs at different echelons are allowed.  Calculating optimal inventory 

policies for each item at each location in a multi-echelon inventory system requires efficient 

solution procedures that can handle large scale inventory systems, reduce the associated 

computational time, and reduce modeling complexity due to the dependency between echelons. 

In a multi-echelon inventory system that implements (R, Q) policies, modeling complexity arises 

when modeling the effect of the delay at the replenishment source due to stockout on the lead 

times of the lower echelons and modeling the lead time demand process at the higher echelons. 

We formulate the policy setting problem in order to minimize the total annual inventory 

investment subject to average annual order frequency and expected number of backorder 

constraints. Due to the complexity of the inventory modeling, we derived expressions for the 

policy parameters at each location at each echelon under different lead time assumptions such as 

deterministic lead times and stochastic lead times (due to stockout at the warehouse). In order to 

calculate inventory policy parameters and incorporate the effect of the delay at the warehouse 

due to stockout, we developed a two-echelon heuristic optimization algorithm that implements 

these expressions. 

The rest of this paper is organized as follows. In Section 2, we provide a literature review of 

important multi-echelon inventory models that have been developed and implemented. In 
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Section 3, we present our problem definition and model formulation. In Section 4, we present 

and discuss our solution procedure. We implement, validate and experiment with the 

optimization algorithm in Section 5. Finally, in Section 6 we conclude and provide extensions for 

future work. 

 

2. Literature Review 

One of the most important multi-echelon, multi-item inventory models for spare parts 

management is METRIC. METRIC is the Multi-Echelon Technique for Recoverable Items 

Control, developed by Sherbrooke (1968) and it is used for setting repairable items inventory 

control policies using the base stock model. The base stock model is a special case of the reorder 

point, order quantity inventory policy, where the reorder quantity Q=1 and it is usually used with 

expensive, slow moving items, and when the holding and backorder costs dominate. The 

objective function in METRIC is minimizing the expected number of backorders at the base 

level, subject to budget constraints while setting optimal inventory policy parameters. In the case 

of low or medium cost items with medium to high demand rates, the (R, Q) policy may be more 

appropriate. 

 Many inventory models have been developed for expensive, low demand, and repairable 

spare parts (e.g. Sherbrooke, 1968; Graves, 1985; Diaz and Fu, 1997; Caglar et al., 2004) where 

the base stock model is implemented at least at one echelon of the supply network. First 

indenture spare parts are only considered for repair, where the repair operations are performed at 

each facility at the first echelon or at the distribution center. In other research, multi-indenture 

repairable spare parts have been considered where lower indentures are modeled (e.g. Muckstadt, 

1973). The base stock model is also implemented in systems that support consumable spare parts 
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(e.g. Axsäter, 1990; Hopp et al., 1999). 

Deuermeyer and Schwarz (1981) presented an analytical model for estimating the expected 

performance measures of a one-warehouse, m identical retailers, and non-repairable spare parts 

inventory system. They examined a system that involves m identical retailers facing stationary 

Poisson demand and operating under (R, Q) replenishment policies. In their research, the main 

challenge was to model the demand process at the warehouse which is a superposition of the 

retailer’s ordering processes. Since they implemented (R, Q) policies at the retailers, they ordered 

in batches of units of items.  In this case, the demand process at the warehouse is not a 

superposition of simple Poisson processes. Instead, it is a superposition of the retailer’s ordering 

processes. Since the demand rate at each retailer for each item is! , and the retailer’s order batch 

size is Q, the demand process at the warehouse is a superposition of renewal processes with Q 

stages and rate!  (Deuermeyer and Schwarz, 1981). Unfortunately, the renewal property is not 

preserved under superposition (Torab and Kamen, 2001). More precisely, except for Poisson 

sources, the inter-arrival times in the superposition process are statistically dependent, a property 

that cannot be captured by a renewal model (Torab and Kamen, 2001). Hence, Deuermeyer and 

Schwarz (1981) approximated the demand process at the warehouse that is generated by identical 

retailers by a renewal process and derived expressions that approximate the mean and variance of 

the warehouse lead time demand. 

Svoronos and Zipkin (1988) proposed a refinement of the Deuermeyer and Schwarz model. 

At the warehouse level, they estimated differently the mean and variance of the warehouse lead 

time demand. They approximated the warehouse lead time demand using a mixture of two 

translated Poisson distributions (MTP). Using the MTP, they estimated the performance 
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measures at the warehouse such as the expected number of backorders, which they used later to 

calculate the delay at the warehouse due to stockout. 

Hopp et al. (1997) considered a single location that utilizes (R, Q) policies and presented 

three heuristics that approximate the inventory policy parameters. Using some approximations 

and the theory of Lagrange multipliers, they derived simple expressions for the inventory policy 

parameters. Hopp et al. (1999) considered a two-echelon spare parts stocking and distribution 

system with an objective function of minimizing total average inventory investment in the entire 

system subject to constraints on average annual order frequency and total average delay at each 

facility due to stockout. At the warehouse, they implemented an (R, Q) policy while at each 

retailer they implemented a base stock model and assumed the demand process is a Poisson 

process. Therefore, the demand process at the warehouse is a superposition of Poisson processes 

which is also a Poisson process.  Since they incorporated the effect of delay at the warehouse, the 

service measures at each retailer depend on the delay at the warehouse due to stockout. The 

average number of backorders at the warehouse is a function of the inventory policy parameters 

at the warehouse. In order to derive expressions that estimate the policy parameters at both 

echelons, they decomposed the system by level and by facility. First, they modeled the 

warehouse and then they modeled each facility. Hopp and Spearman (2001) presented a multi-

product (R, Q) backorder model with an optimization algorithm that estimate the inventory 

policy parameters at a single facility that is faced with Poisson demands and assume fixed lead 

time. 

Cohen et al. (1990) developed a multi-echelon inventory model for the IBM network in the 

United States. IBM’s network is a large multi-echelon system that consists of four main echelons 

with over 15 million part-location combinations and over 50,000 product-location combinations. 
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They developed and implemented a system called Optimizer that determines stocking policies for 

each part at each location. Their objective was to determine the stocking policies for each part at 

each location. They considered emergency shipments, holding costs, replenishment costs 

(includes transportation, handling, and ordering costs). In order to solve the problem, they 

decomposed the model development into three stages; a one-part, one location model, a multi-

product, one location model, and a multi-product, multi-echelon model. In developing the one-

part, one-location problem they developed a periodic review, stochastic model. 

In the inventory systems under consideration, the stocking policies at any given facility 

depend directly on the stocking policies of the facility’s supplier. The effective lead time at any 

facility at any echelon is mainly a function of two components, the transportation times 

(including ordering, receiving, and handling the order, etc) and the random delay at the supplier 

due to stockout. Under decomposition, each facility is modeled under the assumption of ample 

supply at its supplier. Hence, the effective lead times are only a function of the transportation 

times which are assumed to be constant in many situations. Cohen et al. (1990) assumed 

deterministic lead times, and treated each echelon independent of the other echelons, i.e. there is 

always ample supply at the replenishment source. According to Cohen et al. (1990) such a 

solution procedure is likely close to optimality in cases where service requirements at all sites are 

high. Their methodology for decomposing the system by level and assuming constant lead time 

is an efficient one, in which, the system is simplified. As we can see, decomposing the systems is 

widely used and has been shown to be efficient in solving such complicated systems. 

 

3. Problem Definition and Model Formulation 

We build on the previous research by modeling a two echelon inventory system that 
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implements (R, Q) policies at each location. Figure 1 shows a two-echelon inventory system that 

consists of an external supplier that can supply any item with a given lead time and a single 

warehouse that supplies any number of independent identical retailers.  

FIGURE 1 ABOUT HERE 

Under this system, the retailers are faced with demands that are generated by random failures 

of the spare parts at the customer’s sites according to a Poisson process. Since the demand 

process at each retailer for each item is a Poisson process, the demand process at any warehouse 

is a superposition of the retailer’s ordering processes. Specifically, it is a superposition of 

renewal processes each with an Erlang interrenewal processes time with riQ stages and rate per 

state ri!  (Svoronos and Zipkin, 1988). 

The above two-echelon (R, Q) inventory system operates as follows. When a retailer is faced 

with a demand, the demand is satisfied from shelves if the amount demanded is less or equal to 

the number of units available. Otherwise, the demand is backordered. Under a (R, Q) policy, item 

i's inventory position at retailer r is checked continuously, if it drops to or below its reorder 

point riR , a replenishment order of size riQ is placed at the warehouse. The inventory position is 

defined as the on-hand inventory plus the on-order inventory minus the number of outstanding 

backorders. After placing an order with the warehouse, an effective lead time ril elapses between 

placing the order and receiving it. After receiving the replenishment order, the outstanding 

backorders at the retailer are immediately satisfied according to a First-In-First-Out (FIFO) 

policy. 

Since the same policy is followed at the warehouse, the retailer replenishment orders placed 

at the warehouse are satisfied if the on-hand inventory at the warehouse is greater or equal to the 

retailer’s replenishment order size. In other words, a partial filling of an order at the warehouse is 
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not allowed. This is a plausible policy not uncommon in practice, especially when there is a fixed 

cost connected to each transport (Anderson and Marklund, 2000). The warehouse inventory 

position for each item is checked continuously. If it drops to or below the reorder point wiR , a 

replenishment order wiQ is placed with the supplier, where a deterministic lead time wiL elapses 

between placing the order and receiving it. After receiving the replenishment order, the 

outstanding backorders at the warehouse are immediately satisfied according to a FIFO policy.  

Before proceeding in developing the model, we state our assumptions as follows.  We model a 

two echelon inventory system, where each retailer is replenished by only one warehouse.  The 

demand process at each retailer occurs according to a Poisson process.  All orders that are not 

satisfied from on hand inventory are backordered (i.e. lost sales are not considered).  The 

warehouse’s supplier has infinite capacity with a fixed lead time, the warehouse has limited 

supply, and no lateral shipments are permitted between the retailers.  We do not model the 

delivery process from the retailer to the end customer. 

The following is a list of the notation that we will use throughout the paper: 

 w = Warehouse index 

 r = Retailer index 

 i = Item index 

 m = Number of retailers 

 N = Number of items 

 rF  = Target order frequency at retailer r (orders per year) 

 wF  = Target order frequency at the warehouse (orders per year) 

 rB  = Target number of backorders at retailer r 

 wB  = Target number of backorders at the warehouse 
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 ri!  = Item i demand rate at retailer r (units/year) 

  wi!  = Item i demand rate at the warehouse (in units of item i batch size at the  

    retailer per year) 

 riL  = Item i lead time (ordering and transportation) at retailer r (years) 

 wiL  = Item i lead time (ordering and transportation) at the warehouse (years) 

 ril  = Item i effective lead time at retailer r (years) 

 C = Total inventory investment at both echelons ($) 

 ic  = Item i unit cost ($) 

 c  = Superscript that represents the current value. 

 p  = Superscript that represents the previous value. 

 e  = Tolerance. 

 riQ  = Item i replenishment batch size at retailer r (units) 

 riR  = Item i reorder point at retailer r (units) 

 wiQ  = Item i replenishment batch size at the warehouse (in units of riQ ) 

 wiR  = Item i reorder point at the warehouse (in units of riQ ) 

 ( )ririri QRI ,  = Item i expected on-hand inventory at retailer r (units) 

 ( )wiwiwi QRI ,  = Item i expected on-hand inventory at the warehouse (in units of riQ ) 

 ( )ririri QRB ,  = Item i expected number of backorders at retailer r (units). Also, riB  

 ( )wiwiwi QRB ,  = Item i expected number of backorders at the warehouse (in units of riQ ).  

   Also, wiB  

 ( )x!  = The pdf of the standard normal distribution function 
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 ( )xÖ  = The cdf of the standard normal distribution function 

 ( )x1Ö!  = The inverse of the cdf of the standard normal distribution function 

 riF  = Item i average order frequency at retailer r 

 wiF  = Item i average order frequency at the warehouse 

 wrr , & ç, ç !  = Lagrange multipliers that represents the ordering costs at the retailers and 

   the warehouse 

 wrr  & k,k !  = Lagrange multipliers that represents the backordering costs at the retailers 

   and the warehouse 

We assume identical retailers and formulate the two-echelon (R, Q) policy problem in order 

to minimize the total annual inventory investment at both echelons subject to the following 

average annual order frequency and average number of backorder constraints: 

rFretailer each at frequency order  annual Average !  (1) 

wF warehouseat thefrequency order  annual Average !  (2) 

rBretailereach at backorders ofnumber  expected Total !   (3) 

wB  warehouseat thebackorders ofnumber  expected Total !  (4) 

We represent the above model mathematically as follows: 
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 Constraints 10 and 11 are used to make sure that the outstanding backorders are satisfied 

when a replenishment order is received. This means that, customer orders will be satisfied from 

the retailer’s replenishment order that has been placed when the customer placed the order or 

from orders that have been placed with the retailer prior to the customer’s order. Also, the 

retailer’s order will be satisfied from the warehouse replenishment order that has been placed 

when the retailer placed its order or from orders that have been previously placed with the 

supplier. Constraints 12 and 13 are used to make sure that the minimum allowable replenishment 

order size is one. Constraint 14 is necessary, since in real life no partial parts are ordered. Later 

on, in order to simplify the problem, constraint 14 will be relaxed to allow for continuous values. 

Under an (R, Q) policy the expected on-hand inventory for item i at any location when the 

demand during lead time is modeled using a discrete distribution (under which the inventory 

level declines in discrete steps) is defined as follows (Hadley & Whitin, 1963): 
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Where, ][ iDE  is item i expected lead time demand and ( )iii Q,RB  is item i expected      

number of backorders at any time. Since almost all real-world systems involve discrete 

inventory, it generally makes sense to use the discrete inventory formula (Eq. 15) even when a 

continuous model is used to compute the policy parameters (Hopp and Spearman, 2001). Hence, 

we evaluate the inventory level using Eq. 15. Since the demand process for item i at retailer r is a 

simple Poisson process with an annual rate rië , item i’s expected lead time demand at retailer r is: 

 ririri ë]E[D l!=  (16) 

 ririri dL +=l  (17) 

 The first part of Eq. 17, specifically riL , represents item i's transportation time from the 

warehouse to retailer r. Since non-repairable spare parts are considered, no parts are shipped 

back to the warehouse. Hence, no explicit assumption is made on the transportation time from 

any retailer to the warehouse. Also, ordering times are assumed to be negligible and 

transportation times are assumed to be deterministic. The second part of Eq. 17, specifically rid , 

is the delay at the warehouse due to stockout and it is given as follows (Svoronos and Zipkin, 

1988 and Deuermeyer and Schwarz, 1981): 

 ( )
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 Since the demand process at each retailer is a Poisson process and an (R, Q) policy is 

implemented at each retailer, the demand process at the warehouse is a superposition of all the 

retailers ordering processes. Specifically, it is a superposition of independent renewal processes 

each with an Erlang inter-renewal time with riQ stages and rate per state ri! (Svoronos and 

Zipkin, 1988). Dividing the demand rate ( ri! ) for item i at retailer r during a given period of time 
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by its reorder batch size ( riQ ) yields the number of replenishment orders during that period, i.e. 

the order frequency. Thus, item i's order frequency at retailer r is: 
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 Under the assumption of identical retailers item i's demand rate at the warehouse ( wi! ) is: 
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 Svoronos and Zipkin (1988) derived the following expressions for the mean and variance of 

the warehouse lead time demand under the assumption of identical independent retailers: 
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 Where ( )rik Qk /2cos1 !" #=  (23) 

  ( )rik Qk /2sin !" =  (24) 

 We use the normal approximation to the Poisson distribution to approximate the distribution 

of the retailer’s lead time demand. In addition, we approximate the distribution of the warehouse 

lead time demand using a normal distribution with mean and variance as given by Eq. 21 and Eq. 

22. Backorders occur at any point in time at which the demand exceeds the available inventory. 

Under an (R, Q) policy, item i's expected number of backorders is (see Hopp and Spearman, 

2001): 
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 Where !  and !  are the mean and standard deviation of the demand during replenishment 

lead time, respectively. Equation 26 is the continuous analogue of the second-order loss function 

( )x!  (Hopp and Spearman, 2001). The second-order loss function represents the time-weighted 

backorders arising from lead time demand in excess of x (Hopp et al., 1997). 

  

4. Solution Procedure 

 The above two-echelon, (R, Q) optimization model is a large scale, non-linear, integer 

optimization problem. Under the above assumptions, modeling each echelon independent of the 

other echelons is not attainable due to the dependency between them. In order to model the 

warehouse, the retailer’s order batch size must be known a priori. On the other hand, in order to 

model a retailer, its effective lead time must be known. The retailer’s effective lead time is a 

function of the warehouse’s expected number of backorders, which is function of the 

warehouse’s policy parameters. This indicates that both echelons must be modeled and solved 

simultaneously. To solve the above two-echelon inventory system, we assumed identical retailers 

and decomposed the problem into two levels; the retailer (Model 1) and the warehouse (Model 2) 

as follows: 

Model 1: The retailer:  Since minimizing total inventory investment across the retailers is the 

same as minimizing the inventory investment at a single retailer under the assumption of 

identical retailers we formulate the optimization problem at the retailer level as minimizing total 

inventory investment subject to the order frequency and backorder constraints as follows: 
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Model 2: The warehouse:  We formulate the optimization problem at the warehouse as 

minimizing total inventory investment subject to the order frequency and backorder constraints 

as follows. 
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 Decomposition has been used widely in many areas such as inventory management and 

queuing systems (e.g. Cohen et al., 1990 and Hopp et al., 1999). By treating the echelons one at 

a time, we use the assumption that the replenishment lead time is constant, that is; there is always 

an ample supply of parts at the replenishment sources (Cohen et al., 1990). Under this 

assumption, the retailer’s effective lead time is equal to its fixed lead time. In other words, the 

second component that is due to the delay at the warehouse due to a stockout is assumed to be 

equal to zero. This implies that, the retailers can be modeled independent of the warehouse. This 

enables us to calculate the warehouse lead time demand which is function of the retailer’s 

replenishment batch size. 

By decomposing the system into two levels, the warehouse and the retailers are modeled as 

different problems. In the case of identical retailers there are only two problems to solve, one for 

the warehouse (Model 2) and one for the retailers (Model 1). The level-by-level decomposition 

does not, in general, give truly optimal solutions to the multi-echelon problem (Cohen et al., 

1990). Therefore, we are seeking procedures that eliminate the effect of decomposing the system 

by level on the quality of the final solutions. Hence, we are seeking to derive simple formulas 

that approximate the policy parameters under different assumptions such as fixed and stochastic 

lead times, and then to develop an optimization algorithm that implements these expressions 

within the multi-echelon context. 

 

4.1 The Retailer Heuristics 

Hopp et al. (1997) presented heuristics for approximating policy parameters at a single 

location that implements an (R, Q) policy under the assumption of fixed lead time and Poisson 

demands.  They approximated the expected number of backorders during lead time using a base 
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stock model. Under the base stock model, the expected number of backorders is only a function 

of the reorder point which results in simple formulas for the policy parameters as we will see in 

the next section.  

 

4.1.1 The Retailer Under the Assumption of Fixed Lead Time Heuristic (H1) 

 The following policy parameters at the retailer under the assumption of fixed lead times are 

derived as follows (for more details refer to Hopp and Spearman, 2001): 

 Assume ample supply at the warehouse, i.e. fixed lead times 

 Approximate the expected number of backorders at the retailer using a base stock model  

 Assume continuous decision variables 

 Move the order frequency and backorder constraints at the retailer into the objective 

function in model 1 

 Derive the resulting version of the Lagrange objective function with respect to riQ which 

results in the following expression for the retailers batch size: 

i
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ri Nc
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= , i=1, 2 …N (40) 

 Derive the resulting version of the Lagrange objective function with respect to riR which 

results in the following expression for the retailer’s batch size: 
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 Eq. 40 and Eq. 41 are simple expressions that approximate the stocking policies at the retailer 

under the assumption of fixed replenishment lead time. Each one of these expressions is a 

function of only one Lagrange multiplier. Hopp and Spearman (2001) presented an optimization 
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algorithm to search for these Lagrange multipliers under which the search is guided towards the 

target order frequency and the backorder values. This is due to the convexity of these constraints. 

The average on-hand inventory, expected number of backorders, and the average order frequency 

constraints are convex functions of R and Q (for more details see Zipkin, 2000, page 217). 

Instead, we derived expression for the Lagrange multiplier rç which replaces the first four steps 

of Hopp and Spearman’s optimization algorithm, by substituting Eq. 40 into Eq. 29 after 

replacing the less or equal sign in Eq. 29 by an equal sign as follows: 
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 Solving Eq. 42 with respect to rç results in the following expression: 
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 Unfortunately, the backorder constraint, Eq. 30, is too complicated to be solved in exact form 

for r! . The bisection technique is used to search for the Lagrange multiplier ( r! ) that results in a 

reorder point, as given by Eq. 41, that satisfies the following backorder constraint: 
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4.1.2 The Retailer Under the Assumption of Stochastic Lead Time Heuristic (H2) 

 In order to model the effect of the delay at the warehouse due to stockout we relax the 

assumption of fixed lead time at the retailer by assuming limited supply at the warehouse. In 
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order to derive simple expressions for the policy parameters at the retailer under the assumption 

of limited supply at the warehouse we assume that the policy parameters at the warehouse are 

known a priori and approximate the expected number of backorders at the retailer using the base 

stock model. Also, we relax the assumption of integer decision variables to allow for continuous 

decision variables. After incorporating these assumptions, we moved the retailer’s average order 

frequency and the expected number of backorder constraints into the objective function in Model 

1 using the theory of Lagrange multipliers which results in the following Lagrange version of 

Model 1’s objective function: 
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 Taking the partial derivative of Eq. 46 first with respect to ( riQ ) and then with respect to 

( riR ) results in the following simple expressions for the policy parameters at the retailer:  
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 We derived the following expression for the Lagrange multiplier ( r! ) that appears in Eq. 47 

by substituting Eq. 47 into Eq. 29 after replacing the less or equal sign in Eq. 29 by an equal sign 

and solving the resulting expression with respect to r! : 
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 Finally, the bisection technique can be used to search for the Lagrange multiplier ( r! ) that 

appears in Eq. 48 such that it results in a reorder point, as given by Eq. 48, that satisfies the 

backorder constraint, as given by Eq. 45. 

 

4.2 The Warehouse Heuristic (H3) 

Under a two-echelon (R, Q) inventory system, the demand process at the warehouse is a 

superposition of the retailer’s ordering processes. Hence, in order to approximate the expected 

demand at the warehouse, the retailer replenishment order size ( riQ ) for each item must be 

known a priori. In order to derive simple expressions for the policy parameters at the warehouse 

we assumed that the policy parameters at the retailers are known a priori and approximated the 

expected number of backorders at the warehouse using a base stock model. Also, we relaxed the 

assumption of integer decision variables to allow for continuous decision variables. After 

incorporating these assumptions we moved the warehouse average order frequency and the 

expected number of backorder constraints into the objective function in Model 2 using the theory 

of Lagrange multipliers which results in the following Lagrange version of Model 2’s objective 

function: 
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 Taking the partial derivative of Eq. 51 first with respect to ( wiQ ) and then with respect to 

( wiR ) results in the following simple expressions for the policy parameters at the warehouse: 
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 We derived the following expression for the Lagrange multiplier ( wç ) that appears in Eq. 52 

by substituting Eq. 52 into Eq. 35 after replacing the less or equal sign in Eq. 35 by an equal sign 

and solving the resulting expression with respect to wç : 
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 Finally, the bisection technique can be used to search for the Lagrange multiplier ( w! ) that 

appears in Eq. 53 such that it results in a reorder point, as given by Eq. 53, that satisfies the 

following backorder constraint: 
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4.3 Two-Echelon (R, Q) Optimization Algorithm 

The above heuristics are based on modeling each echelon by assuming that the policy 

parameters at the other echelons are known a priori. In the above problem, neither the 

warehouse’s nor the retailer’s policy parameters are known. These policy parameters are 

decision variables to be determined by the optimization model. Hence, the above heuristics can 

not be used independently to set the policy parameters for the system under consideration. 

Heuristics H2 and H3 can not be used to solve the problem directly without first knowing the 

warehouse’s and the retailer’s stocking policies, respectively. Also, the use of H1 in conjunction 

with H3 will not incorporate the effect of the delay at the warehouse due to stockout. Hence, in 

order to arrive at an approximate solution for the stocking policy parameters, we developed and 

implemented the above heuristics in the following iterative heuristic optimization algorithm 

(IHOA): 

 

Algorithm IHOA: 

Step 1. Set  riri L=l , i = 1, 2 …N. 

Step 2. Model the retailer: 

1. Calculate rç  using Eq. 43. 

2. Calculate riQ  for each item using Eq. 40. 

3. Use the bisection technique to search for the Lagrange multiplier ( r! ) that appears 

in Eq. 41 such that it results in a reorder point, as given by Eq. 41, that satisfies the 

expected number of backorder constraint at the retailer, as given by Eq. 45. 

Step 3. Model the warehouse: 

1. Calculate the expected lead time demand at the warehouse using Eq. 21. 
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2. Calculate wç  using Eq. 54. 

3. Calculate wiQ  for each item using Eq. 52. 

4. Use the bisection technique to search for the Lagrange multiplier ( w! ) that appears 

in Eq. 53 such that it results in a reorder point, as given by Eq. 53, that satisfies the 

expected number of backorder constraint at the warehouse, as given by Eq. 56. 

Step 4. Calculate the expected number of backorders at the warehouse using Eq. 25.  

Step 5. Calculate the retailer effective lead time using Eq. 17. 

Step 6. Refine the policy parameters at the retailer: 

1. Calculate r!  using Eq. 49. 

2. Calculate riQ  for each item using Eq. 47. 

3. Use the bisection technique to search for the Lagrange multiplier ( r! ) that appears 

in Eq. 48 such that it results in a reorder point, as given by Eq. 48, that satisfies the 

expected number of backorder constraint at the retailer, as given by Eq. 45. 

Step 7. If NieQQ p
ri

c
ri ,...,1, =!"  

  NieRR p
ri

c
ri ,...,1, =!"  

  NieQQ p
wi

c
wi ,...,1, =!"  

  NieRR p
wi

c
wi ,...,1, =!"   

  Stop 

 Else, Go to Step 3 
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5. Experimentation and Analysis 

 In order to assess the quality of the solutions obtained via the above heuristic optimization 

algorithm we compared the solutions obtained using Algorithm IHOA with the solutions obtained 

using OptQuest for Java search engine. After testing the solutions obtained using Algorithm 

IHOA for a small set of problems with the solutions obtained using OptQuest, Algorithm IHOA is 

used to set the inventory policy parameters for large scale inventory systems. Within these 

experiments, we monitored the associated computation times and the percentage differences in 

the estimated inventory investment. For the sake of experimentation, we set the following target 

values of the order frequency and the expected number of backorder constraints at the retailer 

and the warehouse ( NN wrwr !=!=== 2.0B,0.1B,12F,24F ). Also, we set the number of 

retailers equals to four and the tolerance value e equal to 0.01. Algorithm IHOA, the bisection 

technique, the inventory policy parameters and the Lagrange expressions, and the above 

inventory model were coded in the Java programming language. The following experiments 

were executed on a Pentium 4 computer with a 3.06 GH processor and 512 Cache memory. 

A meta-heuristic is a family of optimization approaches that includes scatter search, genetic 

algorithms, simulated annealing, Tabu search, etc. and their hybrids. The OptQuest engine 

combines Tabu search, scatter search, integer programming, and neural networks into a single, 

composite search algorithm. For more details about OptQuest, we refer the reader to Rogers 

(2002). 

 

5.1. Algorithm IHOA versus OptQuest 

 Algorithm IHOA takes advantage of the structure of the problem under which the search is 

guided towards the target values of the average order frequency and the expected number of 
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backorder constraints. Algorithm IHOA requires no bounds on the decision variables and does 

not require any stopping criteria except for the tolerances associated with the bisection search 

technique. On the other hand, the OptQuest search engine requires the user to set lower and 

upper bounds on the decision variables and to specify at least one stopping criterion. The number 

of iterations and/or the optimization times can be used as the stopping criteria in OptQuest. The 

quality of the solutions obtained using OptQuest depends heavily on the decision variable lower 

and upper bounds, number of decision variables, and the stopping criteria. Since we do not know 

the regions where the optimal solutions might be, OptQuest might not be able to find any 

feasible solutions at all if the specified solution space does not contain any feasible solutions. 

Therefore, we must supply OptQuest with the proper lower and upper bounds in order to arrive 

at acceptable solutions. Hence, we set the policy parameters using Algorithm IHOA and then we 

set the lower and upper bounds around these estimated solutions to be used as the bounds on the 

decision variables in OptQuest. As we can see OptQuest relies on Algorithm IHOA to specify the 

decision variable’s lower and upper bounds. Therefore, completely independent comparison 

between the two methods is not attainable since we do not have an idea about the regions where 

the optimal solutions or near optimal solutions might be before using Algorithm IHOA. 

 In order to arrive at a reasonable comparison between Algorithm IHOA and OptQuest, we set 

the time in OptQuest as the optimization stopping criterion. We ran Algorithm IHOA and 

recorded the associated optimization times. Then, we set lower and upper bounds on the 

estimated solutions. Next, we set the time in OptQuest equal to the Algorithm IHOA optimization 

times. Finally, we ran OptQuest for the specified times and recorded the solutions found and the 

number of iterations executed within that time. Since the quality of the solutions obtained using 

OptQuest deteriorates with an increase in the number of decision variables, we limit our initial 
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experiments to systems that consists of a maximum of 25 items. Table 1 shows the systems 

under consideration. 

TABLE 1 ABOUT HERE 

 The policy parameters for the above six systems were estimated using Algorithm IHOA and 

OptQuest where the time is used as the stopping criterion. Table 2 shows the results of these 

experiments, where the inventory investment and the percentage differences in inventory 

investment between Algorithm IHOA and OptQuest are recorded. As we can see from Table 2, 

Algorithm IHOA optimization times are less than one second. During these experiments, the 

OptQuest engine could not find any feasible solutions in times less than a second. Hence, we set 

the time in OptQuest equal to one second. 

TABLE 2 ABOUT HERE 

 The percentage difference is calculated using the following formula: 

 %100
nvestmentInventoryI

nvestmentInventoryInvestmentInventoryI
  Difference%

lg

lg
!

"
=

Aorithm IHOA

OptQuestAorithm IHOA  (57) 

 Table 2 shows that the percentage differences in the inventory investment between Algorithm 

IHOA and OptQuest are high in most of the cases and they do not follow any regular pattern. We 

concluded that one second of optimization time is not sufficient to arrive at acceptable results 

using OptQuest. In order to obtain better solutions using OptQuest, the number of iterations or 

the optimization times must be increased. With the increase in the number of iterations the 

computational times increase in OptQuest. OptQuest relies on comparing any new feasible 

solution with the old feasible solutions stored in its database. Hence, the database size increases 

with the number of iterations which results in an increase in each iteration’s associated 

computation times.  
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 The above experiments were repeated in OptQuest where the number of iterations is set fixed 

at 40,000 iterations. Table 3 shows the inventory investment obtained using Algorithm IHOA and 

OptQuest (at 40,000 iterations) and the percentage difference between them. OptQuest engine 

found better solutions for the single item system compared to Algorithm IHOA. The inventory 

investment obtained using OptQuest for the single item system is less than the inventory 

investment obtained using Algorithm IHOA by less than 4%. On the other hand, Algorithm IHOA 

found better solutions than OptQuest for the rest of the systems. 

TABLE 3 ABOUT HERE 

 OptQuest computational times increase dramatically with the increase in the number of 

items, when the number of iterations is fixed. This is because the solution space and the time 

required to execute each iteration increases with the increase in the number of items. Hence, 

OptQuest managed to find better solutions for the small systems in shorter time than for the 

larger systems.  

 Figure 2 is a plot of the inventory investment versus the number of items shown in Table 3. 

From Figure 2, it is clear that the quality of the solutions obtained using OptQuest when fixing 

the number of iterations deteriorates with the increase in the number of items when compared to 

Algorithm IHOA. 

FIGURE 2 ABOUT HERE 

5.2. Experiments on Large Scale Systems 

Now, we apply Algorithm IHOA on large scale inventory systems where the computation 

times and the average inventory investment are recorded. Two factors are varied over the 

experiments, the number of items and the effect of the delay at the warehouse due to stockout. 

Table 4 shows the large scale inventory systems under consideration:  
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TABLE 4 ABOUT HERE 

Decomposing the system by echelon eliminates the effect of the delay at the warehouse due 

to stockout on the retailer’s policy parameters. In order to test the effect of the delay at the 

warehouse we modeled the above systems under the assumption of fixed effective lead times at 

the retailers  and the warehouse where only Steps 1-3 of Algorithm IHOA are executed. Also, we 

modeled the above systems using Algorithm IHOA where the effect of the delay at the warehouse 

is incorporated. Table 5 shows the results of these experiments. 

TABLE 5 ABOUT HERE 

As we can see from Table 5, Algorithm IHOA managed to set the inventory policy 

parameters for a 40,000 item system in 26.14 seconds. Algorithm IHOA is a fast optimization 

algorithm that can handle large systems in negligible times. We report in Table 5 the average 

inventory investment for the above six systems when the delay at the warehouse is ignored and 

when it is incorporated. The percentage differences is calculated similar to Eq. 57 except that we 

replaced the term that represents the inventory investment obtained using OptQuest by the 

inventory investment obtained using Steps 1-3 of Algorithm IHOA. The average percentage 

difference in the inventory investment is 0.5325%, the minimum is 0.5236%, and the maximum 

is 0.5567%. The effect of increasing the number of items on the percentage difference is almost 

negligible. Incorporating the effect of the delay at the warehouse due to stockout increases the 

inventory investment on average by 0.5325%. This result is natural since the retailer’s effective 

lead time is expected to increase when modeling the delay at the warehouse. Hence, the 

inventory levels at the retailer are expected to increase with the increase in its effective lead 

times. So, Algorithm IHOA results in more accurate results than in the case of fixed retailer 

effective lead times where the delay at the warehouse is ignored. A 0.5325% increase on average 
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in the inventory investment might be significant in large scale systems as we can see from Table 

5. Under a 40,000 item system, the difference in the inventory investment is more than 13 

million dollars. 

 

5.3. Simulation Analysis 

In this section, the quality of the solutions obtained via Algorithm IHOA will be tested 

against a simulation optimization model where the objective functions and performance 

measures are evaluated using a simulation model. The motivation behind this simulation 

investigation is to compare the solution of Algorithm IHOA which is based on using analytical 

inventory models to approximate the objective function and performance measures with the 

solution of OptQuest where it uses a simulation model to estimate the objective function and 

performance measures values. In Section 5.1, we compared Algorithm IHOA and OptQuest 

where both of them used the analytical inventory model to estimate the objective function and 

performance measures. Since in both algorithms the objective function and performance 

measures are evaluated using the same analytical model, both solutions are feasible and satisfy 

the model constraints. 

Due to the complexity of the problem and its mathematical modeling assumptions, we should 

expect the values of the objective function and performance measures of the analytical model to 

be different than the values obtained using a simulation model.  The analytical formulation and 

solution procedure must make assumptions and approximations that the simulation model does 

not have to make in order to estimate the performance measures.  Thus, there will be natural 

differences between analytical performance and simulated performance.  For more on this issue, 

the interested reader is referred to Tee and Rossetti (2002). Also, it is important to point out that 
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simulation is a statistical experiment and contains sampling error.  This comparison is meant to 

provide an insight into how the analytical formulation approximates the underlying problem with 

the caveat that we know it is only an approximation. Three test cases with number of items, unit 

cost, demand rate, and lead times as shown in Table 6 are considered in this section. 

Tee and Rossetti (2002) in an extensive simulation study for multi-echelon inventory systems 

developed a simulation model for a single item two-echelon (R, Q) inventory system where they 

studied the robustness of two-echelon (R, Q) analytical inventory models developed by 

Deuermeyer and Schwarz (1981), Svoronos and Zipkin (1988), and Axsäter (2000). The main 

objective of their study was to examine the analytical models via simulation when the model’s 

basic assumptions are violated. 

They built the simulation model in Arena 5.0 Simulation language. In this simulation 

optimization study, we rebuilt the simulation model developed by Tee and Rossetti (2002) in 

Arena 9.0. Also, since we are considering multi-item systems, we extended the simulation model 

for the multi-item case. For more details about the simulation model development and simulation 

study we refer the reader to Tee and Rossetti (2002). An optimization model was built for each 

of the above three test cases in OptQuest for Arena where OptQuest used the Arena simulation 

model to evaluate the objective function and performance measures. 

TABLE 6 ABOUT HERE 

Because simulation optimization is so computationally intensive, we used the optimal policy 

parameters suggested by Algorithm IHOA to initialize the search.  The range of each decision 

variable was specified around the initial starting values as was done in Section 5.1. The 

simulation optimization model was allowed to run for 20,000 iterations where the total 

simulation optimization time, inventory investment, policy parameters, expected number of 
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backorders, and average order frequency were recorded as shown in Tables 8-13. 

Table 7 summaries the results of the experiments. As shown in Table 7, Algorithm IHOA 

underestimated the simulated inventory investment for the last two cases and overestimated it for 

the first case. Table 7 shows that the simulation optimization times are high compared to the 

optimization time of Algorithm IHOA and increase as the number of items increases. 

TABLE 7 ABOUT HERE 

Tables 8, 10, and 12 show the solutions obtained using Algorithm IHOA. For the three test 

cases, the objective functions and performance measures are evaluated using the analytical and 

simulation models based on the policy parameters obtained using Algorithm IHOA. Tables 8, 10, 

and 12 shows that the solutions obtained using Algorithm IHOA are feasible for the analytical 

model and satisfy all the constraints. On the other hand, for all the three test cases the solutions 

of Algorithm IHOA are not feasible based on the simulated results.  Again, we caution the reader 

to understand that this is a little like comparing “apples” and “oranges” since the simulation can 

capture complexity that the analytical model cannot capture. 

TABLE 8 ABOUT HERE 

Tables 9, 11, and 13 show the solutions obtained using the simulation optimization model. 

For the three test cases the objective functions and performance measures are evaluated using the 

analytical and simulation models based on the policy parameters obtained using the simulation 

optimization model. Tables 9, 11, and 13 shows that the solutions obtained using the simulation 

optimization model are feasible for the simulation model and satisfy all the constraints. On the 

other hand, for all the three test cases the solutions of the simulation optimization model are not 

feasible for the analytical model. 

TABLES 9-13 ABOUT HERE 
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 Tables 8-13 (last row of each table) show that, the inventory investment and performance 

measures of the analytical model are off the true values for the same policy parameter for all the 

test cases under consideration. As we can see, overestimating or underestimating the inventory 

performance measures impacts directly the behavior of the optimization algorithm. Naturally, if 

the approximations are more accurate, the resulting policy parameter values should better reflect 

results from the simulation model.   

 Based on our knowledge, we have not seen any analytical inventory models that correctly 

estimate all of the inventory performance measures for this problem context over a wide range of 

conditions and values for the control variables.  As expected, this simulation study shows that the 

results from our algorithm are different from the results of a simulation optimization approach.  

However, the results are close enough to show that Algorithm IHOA has clear potential for 

setting reasonably good policy parameter values for large scale problems.  Ultimately, that was 

our goal.  It should be clear that the simulation optimization approach is impractical for any 

realistically sized problems and in that context Algorithm IHOA is clearly a good alternative.  

These results also show that future work is still needed to get better approximations of system 

performance for large scale problems.  A simulation study similar to that done by Tee and 

Rossetti (2002) should be considered for this multi-echelon case to better understand where the 

approximations begin to break down.   

 

6. Conclusions and Future Work 

 We modeled a two-echelon inventory system that implements (R, Q) policies at each facility. 

In order to solve the two-echelon inventory system we decomposed it by echelon. We derived 

expressions for the inventory policy parameters at each facility under different assumptions and 
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expressions for the Lagrange multipliers that appear in the replenishment batch size expressions. 

We developed an efficient multi-echelon optimization algorithm that implements these 

expressions. Our experiments showed that Algorithm IHOA is an efficient algorithm that can set 

the inventory policy parameters for a two-echelon inventory system in negligible times. 

Algorithm IHOA managed to set the policy parameters for a 40,000 items inventory system in 

26.14 seconds. Algorithm IHOA is more efficient than OptQuest for Java from the computation 

times and quality of the solutions points of view in most of the cases examined for small 

inventory systems. The effect of the delay at the warehouse due to stock out has a significant 

impact on the inventory investment when modeling large scale systems. The average percentage 

difference in the inventory investment due to incorporating the effect of the delay at the 

warehouse due to stockout is 0.5325%. The percentage differences in the inventory investment 

do not vary significantly with the number of items.  We also showed via simulation that 

additional research is needed to better approximate the system performance measures of this 

system.  Improved approximations would have a definite effect on the quality of the results from 

IHOA.  This paper considered only the identical retailer case; however, future work is under way 

to consider the non-identical retailer case.. 
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Figure 1:  A typical multi-echelon inventory system 
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Figure 2: Inventory investment versus the number of items 
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TABLES 

Table 1: Number of items per system 

System 1 2 3 4 5 6
Number of items 2 5 10 15 20 25  
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Table 2: Algorithm IHOA versus OptQuest, OptQuest optimization time = 1 second 

Inventory 
Investment ($)

Optimization Times 
(seconds)

Inventory 
Investment ($)

Optimization Times 
(seconds)

Number of 
Iterations

1 2 $273,720.06 0.266 $342,409.77 1.000 3291 -$68,689.71 -25.09%
2 5 $500,344.88 0.235 $2,585,779.65 1.000 1616 -$2,085,434.77 -416.80%
3 10 $546,758.88 0.281 $1,802,175.16 1.000 870 -$1,255,416.28 -229.61%
4 15 $613,069.63 0.297 $5,815,571.80 1.000 546 -$5,202,502.17 -848.60%
5 20 $865,165.48 0.297 $20,629,153.19 1.000 290 -$19,763,987.71 -2284.42%
6 25 $1,147,666.65 0.296 $9,682,534.74 1.000 207 -$8,534,868.09 -743.67%

System Inventory Investment 
% Difference

OptQuestNumber 
of Items

Algorithm IHOA Inventory Investment 
Difference ($)

Inventory holding costs versus number of Items

OptQuest computational time = 1 second 
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Table 3: Inventory investment, Algorithm IHOA versus OptQuest (40,000 iterations) 

Inventory 
Investment ($)

Optimization Times 
(seconds)

Inventory 
Investment ($)

Optimization Times 
(seconds)

Number of 
Iterations

1 2 $273,720.06 0.266 $263,487.72 60 40,000 $10,232 3.74%
2 5 $500,344.88 0.235 $517,651.44 289 40,000 -$17,307 -3.46%
3 10 $546,758.88 0.281 $612,695.26 712 40,000 -$65,936 -12.06%
4 15 $613,069.63 0.297 $770,719.29 1143 40,000 -$157,650 -25.71%
5 20 $865,165.48 0.297 $1,213,210.21 1603 40,000 -$348,045 -40.23%
6 25 $1,147,666.65 0.296 $1,916,849.33 2089 40,000 -$769,183 -67.02%

System Inventory Investment 
% Difference

Number 
of Items

Algorithm IHOA OptQuest Inventory Investment 
Difference ($)
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Table 4: Large scale systems: Number of items per system 

System 1 2 3 4 5 6
Number of Items 100 1000 5000 10000 20000 40000
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Table 5: Inventory Investment versus N and the Effect of the Delay at the Warehouse   

Inventory 
Investment ($)

Optimization 
Times (seconds)

Inventory 
Investment ($)

Optimization 
Times (seconds)

Inventory Investment 
Difference ($)

Inventory Investment 
% Difference

1 100 $5,148,283.88 0.69 $5,119,623.34 0.22 $28,660.54 0.5567%
2 1000 $58,084,336.82 0.77 $57,780,234.72 0.59 $304,102.09 0.5236%
3 5000 $303,844,521.66 2.98 $302,241,641.00 2.13 $1,602,880.66 0.5275%
4 10000 $611,181,403.94 5.84 $607,943,287.54 4.02 $3,238,116.40 0.5298%
5 20000 $1,237,651,996.22 11.42 $1,231,111,661.07 7.72 $6,540,335.15 0.5284%
6 40000 $2,471,328,595.61 26.14 $2,458,262,719.19 15.19 $13,065,876.42 0.5287%

System

Effect of delay at the warehouseSteps 1-3 of Algorithm IHOA Algorithm IHOA 
Number 
of Items
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Table 6: Data Set for 2-Item, 4-Item, and 8-Item Test Cases 

Case Item Unit Cost  ($) Demand Rate (Units/Year) Lri   (Days) Lwi   (Days)
1 901.00 114.00 4.28 4.94

2 3897.00 60.00 29.00 4.62

1 459.00 45.00 4.55 27.82

2 7622.00 92.00 21.46 29.39

3 722.00 431.00 24.31 4.47

4 624.00 98.00 21.06 4.59

1 3633.00 227.00 4.06 21.31

2 5923.00 98.00 28.42 4.13

3 2026.00 97.00 4.47 21.88

4 2629.00 365.00 4.89 4.84

5 7699.00 39.00 4.25 4.02

6 413.00 150.00 27.23 21.63

7 2186.00 32.00 27.96 24.49

8 1761.00 69.00 29.54 4.88

1

2

3
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Table 7: Inventory Investment % Error, Algorithm IHOA vs. Simulation Optimization 

Inventory Investment ($) Time (Seconds) No. of Runs Inventory Investment ($) Time (Seconds) No. of Runs
1 2 $67,226.73 <1.0 1 $55,089.41 37,726 20,000 22.03%
2 4 $179,897.74 <1.0 1 $254,248.00 39,740 20,000 -29.24%
3 8 $482,089.00 <1.0 1 $547,874.10 75,180 20,000 -12.01%

Inventory Investment 
% errorItems Algorithm IHOACase Simulation Optimization
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Table 8: 2-Items, Algorithm IHOA, Time < 1 Second 

Qri 
(Units)

Rri 
(Units)

Qwi 
(Units)

Rwi 
(Units)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

1 5.958 1.157 47.668 -1.529 19.133 9.566 0.107 0.152 19.156 2.389 0.807 1.130
2 2.078 2.304 16.628 -0.511 28.867 14.434 1.893 0.248 28.554 3.570 3.050 1.046

Fr Fw Br Bw Fr Fw Br Bw

24.000 12.000 2.000 0.400 23.855 2.979 3.857 2.176
24.000 12.000 2.000 0.400 24.000 12.000 2.000 0.400

Yes Yes Yes Yes Yes Yes No No

Item
Algorithm IHOA Performance Measures: Analytical Model Performance Measures: Simulation Model

$67,226.727 $67,042.030Inventory Investment

Constraints
Estimated

Target
Constraint Satisfied
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Table 9: 2-Items, Simulation Optimization, Time = 37,726 Seconds, 20000 Iterations 

Qri 
(Units)

Rri 
(Units)

Qwi 
(Units)

Rwi 
(Units)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

1 4.237 0.356 42.379 0.000 26.905 10.760 0.314 0.149 26.952 2.683 0.500 0.155
2 3.000 2.960 11.000 1.976 20.000 21.818 1.146 0.097 20.111 5.492 1.500 0.209

Fr Fw Br Bw Fr Fw Br Bw

23.453 16.289 1.459 0.245 23.532 4.087 2.000 0.365
24.000 12.000 2.000 0.400 24.000 12.000 2.000 0.400

Yes No Yes Yes Yes Yes Yes Yes

Item
Simulation Optimization Performance Measures: Analytical Model Performance Measures: Simulation Model

$55,089.413

Constraints
Estimated

Target
Constraint Satisfied

Inventory Investment $66,484.695  
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Table 10: 4-Items, Algorithm IHOA, Time < 1 Second 

Qri 
(Units)

Rri 
(Units)

Qwi 
(Units)

Rwi 
(Units)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

1 5.826 0.595 46.607 15.676 7.724 3.862 0.026 0.024 7.746 0.967 0.065 0.000
2 2.044 1.967 16.354 25.219 45.005 22.502 2.941 0.706 45.162 5.643 3.022 0.000
3 14.376 27.370 115.008 14.245 29.981 14.990 0.773 0.053 29.870 3.735 3.359 4.582
4 7.374 5.224 58.989 4.710 13.291 6.645 0.260 0.017 13.279 1.664 0.873 1.011

Fr Fw Br Bw Fr Fw Br Bw

24.000 12.000 4.000 0.800 24.014 3.002 7.319 5.592
24.000 12.000 4.000 0.800 24.000 12.000 4.000 0.800

Yes Yes Yes Yes No Yes No No
$179,897.740 $327,696.910Inventory Investment

Constraints

Item
Algorihtm IHOA Performance Measures: Analytical Model Performance Measures: Simulation Model

Estimated
Target

Constraint Satisfied
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Table 11: 4-Items, Simulation Optimization, Time = 39,740 Seconds, 20000 Iterations 

Qri 
(Units)

Rri 
(Units)

Qwi 
(Units)

Rwi 
(Units)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

1 3.110 1.109 41.967 10.012 14.468 4.289 0.019 0.118 14.556 1.079 0.045 0.002
2 2.500 1.671 11.064 20.000 36.799 33.261 3.903 2.112 36.730 8.365 2.722 0.000
3 13.207 27.962 110.064 11.888 32.635 15.664 0.726 0.074 32.302 3.857 0.734 0.000
4 8.500 5.872 53.127 -0.459 11.529 7.379 0.164 0.073 11.508 1.841 0.498 0.762

Fr Fw Br Bw Fr Fw Br Bw

23.858 15.148 4.812 2.377 23.774 3.786 3.999 0.764
24.000 12.000 4.000 0.800 24.000 12.000 4.000 0.800

Yes No No No Yes Yes Yes Yes
Inventory Investment

Item
Simulation Optimization Performance Measures: Analytical Model Performance Measures: Simulation Model

Constraints
Estimated

Target
Constraint Satisfied

$137,147.420 $254,248.000  
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Table 12: 8-Items, Algorithm IHOA, Time < 1 Second 

Qri 
(Units)

Rri 
(Units)

Qwi 
(Units)

Rwi 
(Units)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

1 5.862 0.708 46.898 39.990 38.722 19.361 0.782 0.447 38.725 4.841 0.670 0.000
2 3.017 3.250 24.133 0.236 32.487 16.243 3.239 0.182 32.362 4.041 3.506 0.021
3 5.132 0.141 41.053 16.395 18.903 9.451 0.296 0.198 19.051 2.384 0.344 0.000
4 8.738 2.620 69.908 4.191 41.769 20.885 0.766 0.269 41.660 5.206 1.622 1.301
5 1.669 -0.735 13.353 -0.372 23.365 11.683 0.599 0.161 23.102 2.889 1.028 0.138
6 14.134 10.991 113.072 25.206 10.613 5.306 0.254 0.082 10.659 1.330 0.299 0.032
7 2.837 0.771 22.700 5.489 11.278 5.639 0.929 0.173 11.360 1.422 1.177 0.072
8 4.642 3.286 37.138 32.487 14.864 7.432 1.135 0.088 14.844 1.854 2.227 1.069

Fr Fw Br Bw Fr Fw Br Bw

24.000 12.000 8.000 1.600 23.970 2.996 10.873 2.635
24.000 12.000 8.000 1.600 24.000 12.000 8.000 1.600

Yes Yes Yes Yes Yes Yes No No

Item
Algorihtm IHOA Performance Measures: Analytical Model Performance Measures: Simulation Model

$482,089.000 $664,572.720

Constraints
Estimated

Target
Constraint Satisfied

Inventory Investment  
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Table 13: 8-Items, Simulation Optimization. Time = 75,180 Seconds, 20000 Iterations 

Qri 
(Units)

Rri 
(Units)

Qwi 
(Units)

Rwi 
(Units)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

Fri
(Order/year)

Fwi
(Order/year)

Bri 
(Units)

Bwi 
(Units of Qri)

1 5.500 0.449 41.239 34.000 41.273 22.018 1.359 0.946 41.524 5.540 0.819 0.000
2 3.326 4.222 19.004 0.820 29.469 20.628 2.355 0.172 29.524 5.159 2.914 0.325
3 5.137 -0.035 36.000 11.038 18.882 10.778 0.515 0.507 18.698 2.683 0.384 0.019
4 8.000 2.532 64.000 4.615 45.625 22.813 0.855 0.278 44.857 5.603 0.655 0.069
5 2.500 -1.258 8.000 -0.216 15.600 19.500 0.780 0.201 15.873 4.952 1.083 0.327
6 14.555 10.005 108.000 20.043 10.306 5.556 0.441 0.176 10.286 1.397 0.369 0.012
7 2.667 2.610 19.539 0.000 11.999 6.551 0.385 0.853 12.016 1.635 0.522 0.404
8 4.903 3.760 34.339 -0.432 14.074 8.038 0.874 0.093 14.048 1.984 1.225 0.274

Fr Fw Br Bw Fr Fw Br Bw

23.403 14.485 7.563 3.227 23.353 3.619 7.971 1.429
24.000 12.000 8.000 1.600 24.000 12.000 8.000 1.600

Yes No Yes No Yes Yes Yes Yes

Item
Simulation Optimization Performance Measures: Analytical Model Performance Measures: Simulation Model

Target
Constraint Satisfied

Inventory Investment $395,952.046 $547,874.100

Constraints
Estimated

 

 


