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Abstract 

This paper examines the effect of inventory record inaccuracy within the context of a two-

echelon supply chain.  The system consists of an external supplier, a distribution centre, and a 

retail level.  Each location operates under an (R, Q) reorder point reorder quantity inventory 

control policy with backordering permitted.  The model introduces count-based discrepancies 

into the inventory records and measures the effect on system performance at the locations and 

throughout the supply chain.  A set of simulation experiments examines two fundamental 

methods to mitigate the effect of inaccurate inventory records: carrying extra inventory to protect 

against the errors and using cycle counting procedures to correct the records over time. In 

addition, the effect of learning through the use of cycle counting procedures and error reduction 

methods and the effect of non-compliance (not correcting records) within the system are 

explored. The results indicate that cycle counting can have significant positive effects within the 

entire supply chain.  In addition, the experiments show that the learning effect has benefits both 

locally and throughout the supply chain.  The results also show that non-compliance to the cycle 

counting procedure by locations within the chain can have significant detrimental effects on 

supply chain partners and overall supply chain performance. 
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1. Introduction  

In an era of increasing business-to-business information sharing, inventory record 

accuracy is an essential prerequisite to successful supply chain collaboration.  An inventory 

record typically consists of a stock number, a location identifier, an on-hand quantity, and fields 

indicating the condition of the item.  If an error exists in any of these fields, the inventory record 

may be considered inaccurate. For the purposes of this paper, if a discrepancy exists between the 

on-hand quantity and an actual physical count then the record is considered inaccurate. Systems 

with on-hand quantity errors, can trigger an order when it is redundant, or not make the order 

when it is necessary (DeHoratius and Raman, 2004). As discussed by Hollinger and Davis 

(2001) inventory shrinkage causing record discrepancies are costing firms billions of dollars; 

however, methods to mitigate the effect of inaccurate inventory records within supply chains 

have yet to be fully developed and examined. 

Discrepancy within an inventory record’s quantity field undermines the operation of 

inventory control policies.  Most policies are designed to utilize the current state of the inventory 

(e.g. inventory position = amount on hand + amount on order - amount backordered) to 

determine when and how much to order.  If the current information on the state of the inventory 

system is inaccurate, then inadequate inventory control may result.  This may lead to excessive 

inventory or poor customer service (e.g. fill rates) due to lack of adequate inventory.  Despite 

best efforts to maintain accurate records, it is very difficult for firms to ensure that all inventory 

records (across the different stock keeping units (SKUs)) will be accurate all of the time.  Since 

an individual inventory record is either accurate or not, inventory record accuracy for a firm’s 

SKUs is typically defined (see Brooks and Wilson (1995)) as: 

€ 

% Overall SKU Record Accuracy =
Total number of accurate  records

Number of records checked
×100                  (1) 
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To measure accuracy and account for discrepancies, firms must audit their inventory.   This 

involves the physical counting of the on hand inventory, the comparison to recorded values, and 

the correction of records as needed.   In many cases, this is still done once a year, especially 

because of financial asset reporting requirements.  Because there may be errors within the 

inventory records between audits, the firm incurs additional risk (in terms of poor customer 

service) due to inaccurate records.  Two basic ways to mitigate this risk are to carry additional 

inventory or to correct the inventory records more often.  Both of these options require additional 

cost to the firm: the cost of extra inventory or the cost of maintaining the accuracy of the records.   

Cycle counting has been identified as one of the most effective solutions for maintaining 

high overall SKU record accuracy. Cycle counting is predicated on the periodic physical 

verification of the accuracy of the inventory records, typically through some proven statistical 

sampling methodology or scheduled counting procedure. Cycle counting can be very effective if 

performed correctly. Meyer (1990) presents a case study at a manufacturing company for 

improving inventory record accuracy, which is defined as the ratio of the number of correct 

records to the total records in terms of location and the count of the SKUs. In that case study, 

inventory record accuracy for the company increased from 65% to 95% after implementing cycle 

counting.  Through a cost analysis, the study concluded that attaining a 95% inventory record 

accuracy level with the cycle counting program saved the company approximately $330,000 per 

year as compared to the cost of performing a yearly wall-to-wall count.  

Springsteel (1994) surveyed 410 manufacturing companies and reported that 20% of 

those firms that used cycle counting achieved an overall SKU inventory record accuracy of 98% 

or higher and more than 60% reached accuracies of 90% to 97%. Since this was a survey of 

companies, it was not clear how each company defined accuracy.  The study also indicated that 

“36% of respondents used only cycle counting, 50% of respondents used both wall-to-wall 
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periodic physical counting and cycle counting, with the remaining using only wall-to-wall 

periodic physical counting.” With accuracy levels ranging from 90% to 97% for some 

respondents, it should be evident that cycle counting does not remove all inaccurate records. In 

addition, despite cycle counting’s proven track record, many firms do not use cycle counting 

because of the cost of implementing and executing such a program throughout the organization.  

It is often unclear whether the benefits of more accurate records through cycle counting will out 

weigh the cost of the program to the firm.  

This paper presents a simulation-based approach for understanding the effect of count-

based inventory record discrepancies within a supply chain. In addition, the effect of cycle 

counting as well as the frequency of counting on system performance is investigated.  The effect 

of cycle counting within the supply chain is illustrated in order to better understand and quantify 

the tradeoffs involved. The model introduces errors (discrepancies) into a SKU’s recorded on-

hand quantity at different locations within a two-echelon supply chain. The system consists of a 

single item type that is stocked at a distribution centre and at multiple “retail” locations, with 

each location permitting backorders and following an (R, Q) inventory policy.   

We use the term retail in the more general sense of locations that face immediate 

customer demand.  While retail stores fall into this category, we are not specifically addressing 

classic in-store retailing (since these systems typically have lost sales); however, our results 

should provide insights into systems that permit backordering of demand.  For example, some 

catalogue companies permit backordering.  In addition, systems that have “captured” customers 

that must procure through the supply system often utilize backordering.  Military supply chains 

often work in this manner for a wide-variety of end items (e.g. military supply depots and bases).  

Hospital systems are another example of this type of system, where a centralized distribution 

warehouse may supply a set of hospitals. 
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Within the simulation experiments, two modelling situations are introduced that have not 

been previously studied, namely learning and non-compliance. In the case of learning, we model 

the situation in which inventory stocking locations learn the causes of the errors from cycle 

counting.  In this situation, they may be able to reduce the frequency of the occurrence of errors 

in the records over time. In the non-compliance case, there is a stocking location within the 

supply chain that does not cycle count at all, as opposed to the rest of the system. In this paper, 

the effects of these cases on the overall supply chain are analyzed.  In addition, a sensitivity 

analysis of the factors related to the structure and operation of the supply chain is also explored.  

The rest of the paper is organized as follows. Section 2 presents a brief literature review 

to assist the reader in understanding the context of the research with respect to previous studies. 

Section 3 describes the simulation modelling issues and Section 4 presents the experimental 

design and issues related to running the simulation model.  Section 5 discusses the main 

experimental results and the investigation of interesting cases.  Finally, we summarize our 

conclusions and future research in Section 6. 

2. Literature Review 

In contrast to a simulation approach, the early work in modelling the effect of inventory 

inaccuracy began with the analytical investigation of classic inventory models. Much of the early 

work attempts to either indicate how often to cycle count to prevent inaccuracies or how to adjust 

the inventory policy decisions so that inventory service does not suffer excessively. In Iglehart 

and Morey (1972), the authors study the selection of the type and frequency of counts and the 

modification of the predetermined stocking policy in order to minimize the total cost per unit 

time subject to the probability of a warehouse denial between counts being below a prescribed 

level. Their approach is to formulate a cost function for a periodic review inventory situation and 

ensure that sufficient buffer stock is available to handle an accumulation of discrepancies over a 
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period of time.  Another cost function is formulated in Morey (1986) that can be easily 

implemented in a spreadsheet for determining the optimal number of cycle counts and the 

required increase in the safety stock.  In Morey (1986), the objective was to minimize the total 

cost in order to reach an acceptable stock out level during the cycle count interval. 

Kumar and Arora (1991) examine the effect of inventory record inaccuracy and lead-time 

variability on a single echelon inventory system, utilizing a reorder point, R, and reorder 

quantity, Q, policy. Their approach was to substitute an inaccurate inventory position into a 

standard (R, Q) inventory model, in order to determine the optimal reorder point policy for a 

prescribed service level. The authors derive the system-wide (across multiple items) net holding 

cost in terms of the relative error of inventory miscount. The study indicates that service levels 

are not met due to inaccurate inventory records along with stochastic lead-time for a service parts 

management company. In follow up work, Kumar and Arora (1992) present a method for 

determining the optimal cycle count frequencies given the inventory counting costs, penalty for 

the magnitude of the error, demand rate for the item, economic lot size, and mean error rate of 

the records. The study suggests control procedures to be used during the inventory process. 

Bensoussan et al. (2005) studied the optimal base stock and (s, S) policies by considering 

constant and random information delays due to partial observations. They showed that optimal 

order policies can be achieved through the proper “reference inventory positions.” In addition, 

they highlighted the importance of investing in information systems such as RFID in order to 

decrease the effects of information delays.  Camdereli and Swaminathan (2006) examined a two 

echelon supply chain inventory system with misplaced SKUs at the retailer causing inventory 

inaccuracy under utilization of RFID. They also examined situations where RFID is worth 

applying while considering the fixed and variable costs occurring at retailer and manufacturer 

levels.  
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Atali et al. (2005) also proposed RFID as the tool that provides visibility to the actual 

inventory.  They defined on-hand inventory record and sales-available on-hand inventory in 

their single stage, single item, and periodic review analytical inventory model. The causes of 

inventory inaccuracy are classified into 4 categories: paying customer, misplacement, shrinkage, 

and transaction error. While paying customer demand affects both recorded and sales available 

inventory, misplacement only reduces sales-available inventory. Whenever an audit occurs, these 

items are returned back. Although shrinkage also affects the physical inventory level, they can 

not be returned back. Lastly, transaction errors only affects to inventory record in a positive 

and/or negative way with a zero mean. They showed that inventory record inaccuracy can cause 

significant losses. They proposed inventory control policies with and without utilizing RFID, 

both proven to be able to decrease the inventory discrepancies. 

In another analytical study Bensoussan et al. (2007) categorized causes of inventory 

inaccuracy as transaction errors, misplaced inventory, spoilage, product quality and yield, and 

theft.  The paper describes the situation that occurs at the zero inventory point.  That is, none of 

these causes can occur at the zero inventory point. A “Zero-balance walk” is the process of 

employees checking inventory levels at this point. They studied a periodic review inventory 

problem with partially observed inventory levels considering lost sales where the observation 

process is a “binary valued Markov chain”. Very efficient feedback policies are provided using 

finite and infinite state representations.  

Kök and Shang (2004) discussed inventory record inaccuracy in a single stage inventory 

system with a single item where backlogging is allowed. The aim of the study is to find a joint 

inspection and replenishment policy minimizing total cost over a finite horizon. The study shows 

that an “inspection adjusted base-stock policy (IABS)” is optimal for a single period whereas, 

another cycle counting heuristic “Cycle Count Policy with State Dependent Base-Stock Levels 
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(CCABS)” is nearly optimal for a finite horizon. The trade-off between inventory inspection and 

its associated costs is discussed. In the cases where the cost of putting into affect the inspection is 

high, then carrying more inventory in order to hide the effects of inventory inaccuracy is 

suggested.  

In simulation based research, Young and Nie (1992) developed a simulation model of a 

single echelon inventory system that includes stock-out cost, cycle count cost, purchase order 

cost, inventory holding costs, and annual costs of the items. They studied the effect of changes in 

cycle counting frequencies on an Economic Order Quantity (EOQ)-based inventory system and 

an ABC based reordering system. Various simulation scenarios examined the trade-off between 

cycle counting and non-counting based on the anticipated cost. As cycle counting has significant 

labour cost, poor inventory accuracy results in stock-outs, which result in excessive shipping and 

extra labour cost. They concluded that while making policy decisions, these costs should be 

taken under consideration in order to choose the optimum cycle counting frequency. Young and 

Nie (1992) introduce error by having a 75% chance of subtracting an error amount and a 25% 

chance of adding an error amount based on error rates of 5, 12.5, and 17.5% whenever a demand 

occurs.  For example, if the record had a balance of 100, then it would be changed to 105 with 

75% chance and changed to 95 with 25% change using a 5% error rate when a demand occurred. 

In this paper, we consider a more general error introduction structure as well as a more general 

inventory system consisting of two echelons.  

In a recent study, DeHoratius et al. (2006) studied the effect of discrepancy on system 

performance.  The primary modelling framework of DeHoratius et al. (2006) was based on a 

periodic review inventory process with unobserved lost sales caused by unrecorded demand, 

which is called, “invisible demand”, in the study. A single SKU, at a single echelon was 

simulated to examine the effects of discrepancy under three different replenishment policies: 
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“Full”, involving a newsvendor policy assuming that the retailer knows the actual inventory, 

“Bayes” in which a Bayesian updating procedure is used to account for demand uncertainty and 

uncertainty within a probabilistic inventory record, and “Naive”, which is essentially the 

standard practice of making decisions as if the inventory record is correct.  The study 

demonstrated that in order to get high service levels, the last two policies require higher 

inventory than “Full” which indicates the benefits of higher accuracy levels.   

Most of the previous simulation-based inventory inaccuracy research concentrates on 

single-echelon inventory systems as opposed to multi-echelon systems. However, Fleisch and 

Tellkamp (2005) develop simulation models for a supply chain to identify the impact of 

inventory inaccuracy on the system performance and the most significant reasons for this 

problem. They study the effects of various factors that cause inventory inaccuracy considering a 

number of supply chain performance measures within a dynamic system, which can be modelled 

using simulation. Using discrete and constant time intervals, two cases are modelled; Base case 

and Modified case.  Base case is essentially a three echelon supply chain, where information on 

end-customer demand is available to all echelons and inventory inaccuracy is present.  In this 

case inventory, record inaccuracy is not corrected. In the modified case, the base case is changed 

so that the physical inventory and information system inventory are aligned in each time period 

to eliminate the inaccuracy. This can be conceptualized as cycle counting.  By employing 

monetary and non-monetary performance measures, the models analyze the effect of inventory 

inaccuracy factors such as theft, unsold items, misplaced items, and incorrect deliveries on the 

supply chain. The authors concluded that the impact of the inventory inaccuracies on supply 

chain performance varies depending on the factors that cause them. Theft is found to be the 

factor having the biggest impact on the performance of a supply chain. In our research, we are 
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modelling a two-echelon supply chain that uses the continuous review (R, Q) inventory policy at 

all locations as opposed to the periodic review policy used by Fleisch and Tellkamp (2005). 

Kang and Gershwin (2005) demonstrate that even a small rate of stock loss undetected by 

the information system can lead to inventory inaccuracy that disrupts the replenishment process 

and creates severe out-of-stock situations. In that study, the authors categorize the causes of the 

discrepancies of records into four categories; stock loss, transaction errors, inaccessible 

inventory, and incorrect product identification and discuss each category in detail. Inventory 

inaccuracy in the (R, Q) policy is modelled by using stochastic and deterministic simulation 

models as well as different compensation methods such as safety stock and manual inventory 

verification. In addition, the effect of implementing automated data collection technologies on 

inventory inaccuracy problem is also discussed. The research concludes that even without 

sophisticated identification technologies such as radio frequency identification, the inventory 

inaccuracy problem can be effectively controlled if the behaviour of the stock loss is known.  

The modelling framework and experiments examined in this paper extend and 

complement the above research in several ways. While most of the previous research focused on 

the lost sales case, we examine the situation where backlogging of demand is permitted. While 

the lost sales case may be more interesting in an in-store retail environment, we felt that the 

added memory associated with backlogging may be significant because it is part of the inventory 

position. In addition, backlogging is still applicable to many types of supply chains. We also 

analyze the effect at the wholesale level. Moreover, when properly executed, cycle counting 

should reduce the error rate within the inventory records over time as practitioners take remedial 

actions when identifying the source of the errors. None of the abovementioned research takes 

into account this learning effect of cycle counting on inventory record inaccuracy. Finally, 

previous research often assumes that all the stocking locations act the same. In reality, in a multi-
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echelon supply chain some of the stocking locations may not follow the same procedures as 

other locations. This key issue is also taken into consideration by introducing the concept of 

“non-compliance”. That is, stocking locations that do not follow a specified procedure (i.e. cycle 

counting). 

Based on the literature, we can conclude that simulation modelling in this area can 

provide insights into the underlying dynamics of systems that experience inventory record 

inaccuracy.  Thus, simulation models can lay the foundation for future analytical work in the 

area and provide a better understanding of how these systems will react to more realistic 

situations, such as learning and non-compliance. In the following section, we present the 

simulation model that was developed for this research.   

3. Simulation Modelling 

In this section, we present the structure and operation of the simulation model used 

within this study.  In particular, we describe the model’s representation of the supply chain and 

inventory control policy, the modelling of errors within the inventory records, and the 

implementation of cycle counting procedures. 

3.1 Modelling Supply Chain and Inventory Control  

For this research, we built upon a previously developed Arena™ simulation model 

capable of simulating a multi-echelon inventory and distribution system with levels consisting of 

Inventory Holding Points (IHP’s). An inventory holding point is a location that may stock and 

satisfy orders for IHP’s assigned to it from lower levels in the hierarchy. Because we do not 

model the interactions between item types (e.g. waiting to fill truck loads of multiple items, 

product substitution, etc.), it is only necessary to consider stocking the same item type at each 

IHP. Thus, the supply chain is limited to a single item type. Each IHP may have many IHP’s for 

which it acts as a supplier. In this case, the IHP is referred to as the parent for its children 
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(IHP’s). An IHP may have only one IHP serving it from above in the hierarchy. This 

arrangement results in a tree structure as illustrated for the two-echelon case in Figure 1. 

 

Figure 1 A Simple Multi-echelon Inventory System 

In Figure 1, the top level IHP can be considered as an external supplier, intermediate 

IHP’s can be considered as distribution centres and finally the lowest level can be considered as 

the retail level, which experiences end user demand.  Parent IHPs experience demand only from 

their children IHPs.  There is no lateral supply involved. 

In the model, a reorder point reorder quantity (R, Q) inventory policy is utilized at each 

IHP. If the IHP does not have sufficient stock to satisfy the demand, then the order gets 

backlogged. The lowest level IHPs experience customer demand according to a Poisson process.  

Poisson arrival processes are often found in these situations and are convenient from a modelling 

perspective.  The upper level IHPs experience replenishment requests for the order quantities 

associated with their child IHPs when the child’s inventory position (inventory level + amount 

on order – amount backlogged) reaches its corresponding reorder point. The time between the 

placement of a replenishment order by a child IHP and the arrival of the replenishment from its 

parent IHP is called the lead-time. The lead-time may consist of the waiting time to fill the order 

if backlogged plus a transport time to move the order from the parent IHP to the child IHP.  The 

parent IHP, in-turn, orders for replenishment from its parent IHP until the top level of the 

hierarchy is reached.  The external supplier can satisfy any order placed on it, with the order 
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being satisfied after a corresponding delay for the lead-time. Conceptually, the external 

supplier’s lead-time is the production and transport time for the order. 

Since we assume that the IHP’s at each level follow the same basic type of inventory 

policy, the same inventory control activities can be applied for each IHP. The flowchart in Figure 

2 illustrates the main inventory control activities at an IHP.  

 

Figure 2 Flowchart of an IHP’s Control Activities  

As seen in Figure 2, when a demand (customer order) occurs, the amount of the demand 

is determined, and then the system checks for the availability of stock. If the inventory on-hand 

is enough for the order, the demand is filled and the inventory on-hand is decreased. 

Immediately, the (R, Q) inventory policy is checked to see if the inventory position goes below 

the level R, then an order of Q is placed with the parent IHP. On the other hand, if the inventory 

on-hand is not enough to fill the order, the entire order is backordered. The backorders are 

accumulated in a queue and they will be filled on a first-come-first-serve basis after the arrival of 

replenishment order. When a replenishment order arrives, the back order queue is processed.  
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Each waiting order is released (the dashed signal to release line in Figure 2) to attempt to be 

filled by the newly arriving replenishment order.  If a backordered demand can be filled, it 

proceeds as a filled demand and the stock level is updated; otherwise, it is returned to the back 

order queue.  Since this process can change the backordered amount or the amount on hand, the 

inventory position must again be checked.  This basic model with multiple levels and multiple 

IHPs at each level has been extensively verified and validated in references Tee and Rossetti 

(2001), Rossetti and Tee (2002), and Al-Rifai´ and Rossetti (2007).  The verification and 

validation process included the comparison with known analytical results. 

3.2 Modelling Discrepancies within the Inventory Record 

 Under the assumption of a (R, Q) inventory control system, a corresponding 

computerized inventory control system must track the on hand inventory, the amount on order, 

and the amount backordered over time. For our purposes, a key variable that can experience error 

is the amount of recorded on hand inventory. Let 

€ 

Ia (t) be the actual physical amount of 

inventory on hand for the item type and let 

€ 

Ir(t) be the recorded amount of inventory on hand 

for time 

€ 

t . The discrepancy for a record at time 

€ 

t  is defined as the true amount minus the 

recorded amount, 

€ 

D(t) = Ia (t) − Ir(t).  If there are no causes for discrepancy within the system, 

then 

€ 

D(t) = 0 for all time 

€ 

t ; however, we know that this ideal case is rare.  If 

€ 

D(t) > 0  then the 

inventory record is considered to be inaccurate at time 

€ 

t . Let the amount on order and the 

amount backordered at time 

€ 

t  be 

€ 

IO(t)  and 

€ 

B(t) , respectively. Because the inventory position is 

based on the recorded inventory, we have that 

€ 

IP(t) = Ir(t) + IO(T) − B(t) .  Thus, when 

€ 

D(t) > 0 , incorrect ordering may be triggered when comparing 

€ 

IP(t) to the reorder point.  When 

simulating such a system, we must therefore keep track of both 

€ 

Ia (t) and 

€ 

Ir(t).  We need 

€ 

Ia (t) 
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when correcting the record and when actually filling an order.  We need 

€ 

Ir(t) when determining 

the reordering. 

 In the situation of multiple SKUs, the count of the number of inventory records that are 

inaccurate relative to the total counted at a particular instance in time, defines the overall SKU 

record accuracy, as per equation (1).  Since we only have one item type, we concentrate on error 

processes that introduce discrepancies such that 

€ 

D(t) > 0 will be true at various instances in 

time.  Two types of error causing processes were modelled: (1) stock loss error defined as loss of 

inventory due to shrinkage, destruction, perishing, etc., which is not correctly recorded in the 

system as a loss and (2) transaction error which is introduced at receipt transactions only; when 

an IHP receives a shipment from its supplier. Stock loss is similar to the “invisible” demand 

concept as presented in DeHoratius et al. (2006); however, we only allow losses to occur. It 

reduces 

€ 

Ia (t) without a corresponding change in 

€ 

Ir(t) and creates a discrepancy in the inventory 

records. Kang and Gershwin (2005) discuss many error causes and indicate that the unknown 

stock loss errors have a major effect on most of the SKUs of a store. In addition in Fleisch and 

Tellkamp (2005), they mentioned the possibility of having less error in the upper level IHPs as 

batch sizes increase. Thus, in our model, we introduce stock loss only at the “retail” level 

(closest to customer demand).  Transaction error affects the recording of the quantity received 

when a previously ordered replenishment arrives. 

Stock loss is modelled as a compound renewal process with the time between 

occurrences of stock loss events governed by an exponential distribution with a mean time 

between arrivals of TBA. In other words, the counting process associated with the occurrence of 

stock loss events is a Poisson process.  The reciprocal of TBA is the (annual) frequency or rate of 

stock loss occurrence. When a stock loss event occurs, the amount of the loss is determined using 

a distribution with a mean quantity defined as the mean stock loss quantity (MSLQ). However, 
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in determining the actual amount of stock loss at the stock loss event, there is always a limitation 

based on the actual on-hand inventory. At each stock loss occurrence, if the recorded on-hand 

inventory for the IHP is less than the amount generated for the stock loss quantity, then the stock 

loss amount is taken as the recorded on-hand inventory, i.e. we cannot lose more than we have 

on hand.  This process can be formulated as follows.  Let 

€ 

X(t) represent a stochastic counting 

process denoting the total amount of stock loss up to and including time 

€ 

t , let 

€ 

N(t) represent a 

Poisson process governing the number of stock loss events, and let 

€ 

Yi be the amount of stock loss 

at the 

€ 

ith  stock loss event where  

€ 

Yi = min(Ia (t),Y ) , with 

€ 

Y ~ F(y) as the amount of loss 

distribution, 

€ 

E[Y ] = MSLQ .  Then, we have that 

€ 

X(t) = Yii=1

N (t )
∑ , which would be a compound 

Poisson process if 

€ 

Yi and 

€ 

N(t) were independent. 

To determine a reasonable distribution for 

€ 

Y  we examined over one million observations 

of discrepancies for a major company involving multiple items at multiple locations.  The data 

was collected as part of the company’s normal yearly wall-to-wall inventory audit procedures for 

the locations.  Thus, we are building an amount of loss distribution for an arbitrary or generic 

item type.  The discrepancies were broken down into both positive and negative discrepancies.  

Table 1 presents the basic summary statistics over the discrepancy (D) observations.  As 

indicated in the table, the overall discrepancy distribution’s central tendency is slightly negative; 

however the median and mode of the distribution are positioned at zero.  For negative 

discrepancies, the sample average is -4.875; however, because of the large negative skew the 

median is -2.  Similarly for the positive discrepancies, the sample average is 5.855 with a median 

of 2. 
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Table 1 Summary Statistics on Industry Discrepancy Values 

Statistic D D < 0 D > 0
Number of observations 1056383 389441 176475
Sample Average -0.819 -4.875 5.855
Sample Std. Dev. 15.003 19.957 19.642
Minimum -999 -999 1
1st Quartile -1 -4 1
Median 0 -2 2
3rd Quartile 0 -1 5
Maximum 997 -1 997
Mode 0 -1 1
Count for mode 490467 189440 74920
Skewness -11.34 -21.98 20.99  

Figures A-1 and A-2 in the appendix illustrate the frequency tabulation for the top 95% 

of the values for the discrepancies. Let 

€ 

D− and 

€ 

D+  be the negative and positive discrepancy 

random variables, respectively.  Recall that 

€ 

Y  is defined as the amount of the loss.  Since this 

quantity is defined as a loss, we can model it with the distribution of the absolute value of 

€ 

D−.  

This assumes that the distribution of negative discrepancy is representative of the loss for a 

particular item.  In the absence of other ways to model this quantity, we felt that this was a 

reasonable assumption.  

Based on the shape of the histograms and observed statistics, we feel that it is also 

reasonable to assume that a geometric distribution is a good model for the values associated with 

the discrepancies.  We did not perform a goodness of fit test of this assumption because clearly 

with over 1 million observations the test statistic would reject the hypothesis.  The purpose of 

this analysis is to formulate a reasonable model of the discrepancies to be included within the 

simulation. From the data, we must estimate the parameter of the geometric distribution.  From 

the histogram, we estimate that 

€ 

E[Y ] = MSLQ =1 p =1 0.49 = 2.05.  This seems reasonable 

given the other measures of central tendency presented in Table 1. 
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Transaction error is modelled through a series of probabilistic processes. When an IHP 

receives a replenishment order, there is a probability that a transaction error may occur. For 

example, a person recording the transaction may incorrectly record the amount of the 

replenishment (e.g. because of miscounting, miss scanned barcode, etc.) or something may have 

happened during order filling or shipping that caused the received quantity to be different from 

the ordered quantity. In some sense, this is as if 

€ 

IO(t)  has error, but we only realize the error 

when changing

€ 

Ir(t) upon replenishment. Once we determine whether or not a transaction error 

occurs, we then randomly determine the direction of the error. We allow the probability of error 

to vary by level within the hierarchy.  For example, there can be a 4% chance of transaction error 

occurring between the supplier and the warehouse, and an 8% chance of transaction error 

occurring between the warehouse level and the retail level. 

For simplicity, we assume that if a transaction error occurs there can be an unintentional 

gain in the record inventory level or an unintentional loss with a 50% chance of occurrence.  

Other studies see for example Morey (1985), also assume that a loss or a gain is equally likely 

(e.g. the error amount is normally distributed about zero). Although there is a slightly higher 

chance of having negative discrepancies based on the data in Table 1, we know that there are 

multiple error processes in effect.  With the explicit modelling of stock loss (a purely negative 

discrepancy), we see no reason to hypothesize that transaction error will favour negative error 

introduction. Besides, we feel that the explicit modelling of stock loss and a balanced transaction 

error probability will result in a slightly negative overall discrepancy distribution (as supported 

by Table 1).  Because we do not have explicit data on transaction errors, we will check the 

sensitivity of this assumption in the experiments.  
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Based on the data from Table 1 and Figures A-1 and A-2, the amount of transaction error 

(gain or loss) was again modelled using a geometric distribution. Let 

€ 

pe be the chance that a 

transaction error occurs and 

€ 

V  be 1 if it will occur and 0 if not.  Let 

€ 

pg  be the chance that a gain 

will occur and 

€ 

G = +1 if there should be a gain and 

€ 

G = −1 if there should be a loss.  Finally, let 

€ 

Z  represent the amount of the loss or gain, where 

€ 

Z  is distributed according to a geometric 

distribution with mean 

€ 

E[Z]. Based on the data in Table 1, we assume that 

€ 

E[Z] = 2 .  The 

median of both the positive and negative discrepancy distributions was 2, so this appears to be a 

reasonable compromise given that we don’t have actual transaction error data. Thus, the potential 

amount of transaction error will be the random variable defined by 

€ 

V ×G × Z ; however, two 

additional conditions are necessary to determine the actual amount of the transaction error.  That 

is, we assume that the transaction error cannot be larger than the size of the replenishment order 

and that if the transaction error is negative, it cannot be more than the recorded on hand for the 

item.  Let 

€ 

W  be the error associated with a transaction, let 

€ 

Q be the replenishment quantity 

associated with the transaction and let 

€ 

Ir(t) be the recorded inventory associated with the 

replenishment order.  Thus, we have that: 

€ 

W =

Z V =1,G =1
max(−Ir (t),−min(Q,Z)) V =1,G = −1

0 V = 0

 

 
 

 
 

                                             (2) 

3.3 Modelling Cycle Counting Procedures 

 As discrepancies are introduced into the inventory record, 

€ 

D(t) = Ia (t) − Ir(t), will grow 

(or shrink) over time.  Because 

€ 

IP(t) depends on the recorded inventory level, the ordering of 

replenishments may not occur when required by the control policy.  Because of this, it is 

important to correct 

€ 

Ir(t) by setting it to 

€ 

Ia (t) periodically; otherwise, the control system can 

become unstable (i.e. always ordering and increasing the inventory level or not ordering and 
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allowing the inventory level to steadily decrease).  The periodic correction of 

€ 

Ir(t) by using 

€ 

Ia (t) is conceptually the same as performing a physical count (i.e. cycle counting). Because of 

financial reporting requirements, we assume that the maximum time between cycle counts 

(TBCC) is one year. By reducing the TBCC, we can increase the frequency of cycle counting 

and thus increase the likelihood that 

€ 

D(t) is near zero over time. 

 Correcting the records is not the only goal of a correctly implemented cycle counting 

program.  In fact, just changing the records without identifying the underlying problem that 

caused the discrepancy can potentially cause more harm than good.  By identifying the 

underlying cause of the discrepancy and preventing the future occurrence of those causes, the 

over all rate of discrepancy should diminish over time.  In order to model this situation, we 

postulate a learning curve effect that reduces the rate of stock loss after each cycle count.  A 

learning equation model of the learning effect as a reduction in the annual rate of the stock loss 

errors was placed in the simulation model.   Let  NR  be the annual arrival rate of the errors at the 

Nth cycle count, 1R  be the annual arrival rate of errors at the first cycle count, b be the slope of 

the learning curve (LC) which equals (log(learning rate)/(log2), and N be the current number of 

cycle counts.  Thus, the annual rate of the errors at the Nth cycle count is given by

€ 

RN = R1N
b . 

Therefore, as we increase the number of cycle counts, the annual rate of the stock loss errors 

decreases. This rate is then converted to TBA by taking the reciprocal and converting the time 

units appropriately.  

In a real system, the correction of inventory records occurs not only when a cycle count is 

performed but also when other opportunities occur. These are so called “opportunity” counts. As 

an example, consider the following two cases. The first case happens when demand occurs while 

there is actual inventory on the shelf but the recorded inventory is showing a zero balance. This 
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situation presents an opportunity to correct the record, because the items can actually be seen on 

the shelf when the attempt to fill the demand occurs; however, there are many realistic situations 

(phone ordering via clerk, internet ordering, etc) in which there is only access to the recorded 

inventory level when the attempt to fill the demand occurs.  In this situation, the actual value 

cannot be known without physically checking all the locations where the inventory may be 

stored.  Because of this, we assume that only the inventory record is visible when the attempt to 

fill the demand occurs. Therefore, in our model we do not use this opportunity to correct the 

record. Even though this opportunity is missed, the records will be corrected via the next 

scheduled cycle count. 

The second case involves the situation in which a demand arrives and there is no actual 

inventory on the shelf but the recorded inventory record is showing a positive balance. In this 

case, it is impossible to fill the customer demand because there is no stock available. In other 

words, a demand was accepted based on the positive balance, but when the attempt to fill the 

demand occurs there are actually no items available to fill the demand.  In this situation, the 

demand is backordered. This presents an opportunity to correct the record. In our model, we use 

this opportunity to correct the record but assume that the correction is instantaneous. In general, 

an opportunity count may involve the passage of time when searching for the item and verifying 

that the true balance is really zero.  

3.4 Modelling Outputs and Performance Measures  

The primary performance measures chosen for analysis are based on: fill rate, on hand 

inventory, and number of backorders. All the selected performance measures are computed for 

the overall system as well as for the lowest echelon (retailer level) and the highest echelon 

(warehouse level) and they are analyzed annually.  Thus, the system performance measures 

include the average system fill rate (the percentage of demands from customer to retail level or 
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from retail level to warehouse level, which are not backordered), the average true system 

inventory (the time average total amount of actual inventory in the system), the average recorded 

system inventory (the time average total amount of inventory that is recorded in the system), and 

the average number of back orders in the system (the time average total number of back orders 

throughout the entire system).  Similar measures were collected for the lowest echelon (retail 

level only), and for the highest echelon (warehouse level only). 

Since we are using only one item, the amount of inventory on-hand can serve as a 

surrogate for cost. The fill-rate measures provide an analysis on the effect on customer service.  

In addition to the above performance measures, we report the average fill rate, average 

inventory, and average number of backorders by individual location (i.e. different retailers and 

the warehouse), when scenarios involve the analysis or comparison by location. 

4. Experimental Design 

In this section, we discuss the issues related to setting up, running, and analyzing the 

experiments associated with the simulation model. The simulation experimentation was carried 

out in two phases. The first phase examined models with and without the inventory accuracy 

errors in order to analyze warm-up periods and collect base line performance measures. Generic 

information about the supply chain behaviour was gathered by varying experimental factors.   In 

the second phase, we examined specific novel scenarios (e.g. non-compliance) in order to 

develop an understanding of these cases.   

4.1 System Overview and Simulation Execution Issues 

The basic structure of the model consists of a supplier, a warehouse, and 2 retailers (two-

echelon inventory system). The system’s operation is based on the demand arrival process, 

system operation parameters (policies), and system operating rules.  The followings summarize 

the basic modelling assumptions: 
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• The demand process at each retailer follows a Poisson process. 

• Only vertical shipments between the parent IHP and the child IHP’s are allowed, i.e. no 

lateral transhipments. 

• The top-level IHP experiences just a delay for replenishment and it is assumed to be 

replenished by a supplier with unlimited stock. There is negligible setup cost associated 

with orders. 

• All IHPs follow the basic (R, Q) continuous review policy for inventory replenishments.   

• No partial fulfilment of orders is allowed, and all unsatisfied demands are backordered. 

An important aspect of this model is the non-stationary behaviour that is introduced 

because of the inventory record error processes. For some cases of the experimental design 

space, this can cause the actual inventory level to continuously rise or fall in a non-stationary 

manner. This sort of behaviour will persist until the inventory records are corrected (via cycle 

counting). We assume that at the end of each year an inventory audit is performed (a cycle count 

occurs at the end of a year). This allows the records to match at least once until the errors begin 

to propagate within the network. Because the system is “reset” at the end of each year, any non-

stationary (or out of control) behaviour is confined to a yearly interval. This is similar to the 

steady state cyclical parameter simulation concept described in Law and Kelton (2006).  In 

executing the simulation, we still have a warm up period to initialize the inventory and orders 

through the system. In our simulations, we do not turn on the error generation processes until 

after the warm up period. Based on an analysis of the warm up period using standard techniques 

(e.g. see Law and Kelton (2006)), we determined that a warm up period of 1 year was sufficient. 

After the simulation has been warmed up, the model is run for an additional year (to collect 

performance on a yearly basis). Within the experiments, each case is then replicated 50 times, 

resulting in 50 years of observation.  
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4.2 Base Case Analysis 

In the first phase, a detailed understanding of the system behaviour was observed by 

varying the inventory policy and operating parameters of the model such as mean TBA of stock 

loss error, TBCC, mean time between demands, order quantity, and reorder points for the 

retailers and warehouse. We call the baseline case, without any error processes turned on, the 

ideal case. In other words, the performance that is achieved by this situation is the best that can 

be expected.  Once the error processes are turned on (with or without cycle counting), the 

performance of the system should deteriorate as compared to the ideal case. Since the ideal case 

does not have any error processes, cycle counting and learning effects are not applicable. The 

system parameters for the ideal case including inventory policy parameters, error and varying 

model parameters are given in Table 2.  

Table 2 System Parameters for the Ideal Case 

Retailer Reorder Point (R Retailer  ) 10 units
Retailer Reorder Quantity (Q Retailer  ) 339 units
Warehouse Reorder Point (R Warehouse  ) 191 units
Warehouse Reorder Quantity (Q Warehouse  ) 2556 units
Retailer Time Between Demands (days) Exp (0.1)
Retailer Replenishment Delay (days) 3
Warehouse Replenishment Delay (days) 14

System Parameters

 

We used the optimization tool, OptQuest for Arena, for setting the (R, Q) inventory 

policy parameters for each location in the system. The OptQuest engine combines Tabu search, 

scatter search, integer programming, and neural networks into a single, composite search 

algorithm. For more details about OptQuest, we refer the reader to Laguna and Marti (2003).  

The algorithm sets (R, Q) for item at each level of the system in order to achieve a minimum 

90% fill rate at both warehouse and retailer levels while keeping a maximum order frequency per 
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year of 24 for each retailer and 4 for the warehouse. In order to visualize the effect of varying 

TBA of stock loss errors and TBCC on retailer fill rate a surface chart was developed. System 

error parameters for surface charts are given in Table A-1 in the appendix along with varying 

system parameters, which were used for performance measures.   

The average results of 30 replications can be conceptualized as surface charts, see for 

example Figure A-3 in the appendix. In the figure, the retailer fill rate begins to drop off 

substantially as TBA of stock loss errors decreases while TBCC increases. For TBA of stock loss 

errors of more than one week, the effect of the time between cycle counting on the retailer fill 

rate decreases (performance is nearly maintained). This is reflected in the large flat area at the 

top of the graph. In addition to this analysis, surface charts for discrepancy and retailer backlog 

as a function of TBA of stock loss errors and TBCC were also developed. Those surface charts 

reflected similar effects on the performance measures. There were substantial decreases in 

discrepancy as TBCC increases when TBA of stock loss errors is less than a week. A similar 

effect was observed for the number of backlogs. There were significant decreases in backlog as 

TBCC increases when TBA of stock loss errors is less than a week. The charts reflected less 

sensitivity in performance measures for TBA of stock loss errors is more than one week.  These 

results indicate that the simulation model is working as expected in terms of the key performance 

measures of interest. 

After observing the effect of varying TBA of stock loss errors and TBCC, we then 

extended the experiments to assess the effect of varying demand and error parameters in addition 

to varying cycle counting frequency. For these experiments we developed different scenarios 

with different system parameters. In addition to the ideal case (medium demand with the retailer 

time between demand Exponential (0.1)), we developed more cases to illustrate high and low 

demand in the system. In these cases, the retailer times between demands were determined as 
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Exponential (0.01) and Exponential (1) for high demand and low demand respectively. We also 

introduced high error and low error cases to demonstrate different levels of errors in the system. 

In the high error cases, probabilities of observing receipt transition error for retailer and 

warehouse are 8% and 4% respectively whereas in the low error cases these values are assumed 

to be 4% and 2%. TBA of stock loss error values are also changed based on the demand rates. In 

addition, in order to observe the effect of the frequency of the cycle counts, for some cases the 

cycle counting frequency was varied as more frequent and less frequent. With these varying 

demand rates, and error levels, we developed 9 scenarios. These scenarios are: 

• S1: No error, without cycle counting, 

• S2: High error, without cycle counting, inventory policy parameters re-optimized, 

• S3: Low error, without cycle counting, inventory policy parameters re-optimized, 

• S4: High error, without cycle counting, 

• S5: Low error, without cycle counting, 

• S6: High error, with cycle counting, 

• S7: Low error, with cycle counting, 

• S8: High error, with more frequent cycle counting, and 

• S9: Low error, with less frequent cycle counting, 

The cases that refer to re-optimized inventory parameter settings represent the fact that in 

a real inventory system, a company would not permit the poor customer service that results when 

inventory records have inaccuracies.  We assume that if they are aware of the problems with the 

inventory records that they would take either of two actions: 1) increase inventory levels as a 

protection against the errors, or 2) perform cycle counting. We use the re-optimized cases to 

determine what the new inventory policy parameters need to be in order to meet fill rate settings 

under conditions of error.  The same optimization method used previously was utilized in this 
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situation for setting the (R, Q) inventory policy parameters for S1, S2, and S3. For high, medium 

and low demand rates, optimized (R, Q) values are determined in S1 without turning on the error 

processes. Since there were no errors in the system, no cycle counting (thus no opportunity 

counting and learning curve effect) was considered. In S2 and S3, inventory policy parameters 

were re-optimized considering high and low system error parameters. In this process, the new 

optimized (R, Q) inventory policy parameters, which result in minimum 90% fill rates, were 

determined and used, . Scenario S2 refers to factor settings that result in more stock loss and 

transaction errors whereas S3 refers to factor settings that result in less stock loss and transaction 

errors. In scenarios S4-S9, the (R, Q) inventory policy parameters for S1 were used. The time 

between cycle counts is varied from every 28 days (monthly) to 182 days (half a year), which is 

consistent with what was found in Raman et al. (2001). The system parameters for the 9 

scenarios, including inventory policy parameters and error parameters are given in Table A-2 of 

the appendix. Results of the scenarios are given in Table 3. 
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Table 3 Results for Scenarios 1-9 

HD 0.921 (0.001) 0.921 (0.001) 0.939 (0.003) 7304.112 (16.730) 1826.463 (5.926) 5477.650 (16.880)
MD 0.979 (0.002) 0.979 (0.002) 0.930 (0.013) 1361.982 (11.130) 322.860 (1.956) 1039.122 (9.591)
LD 0.911 (0.006) 0.912 (0.006) 0.902 (0.011) 45.964 (0.591) 11.532 (0.138) 34.431 (0.558)
HD 0.892 (0.004) 0.892 (0.004) 1.000 (0.000) 8679.622 (45.440) 2739.131 (15.770) 5940.492 (45.420)
MD 1.000 (0.000) 1.000 (0.000) 0.983 (0.008) 2860.972 (36.730) 910.946 (8.361) 1950.026 (35.280)
LD 0.951 (0.010) 0.952 (0.011) 0.913 (0.023) 96.473 (2.549) 50.109 (2.039) 46.364 (1.311)
HD 0.891 (0.003) 0.891 (0.003) 0.895 (0.009) 5611.576 (40.080) 890.008 (6.799) 4721.568 (38.350)
MD 0.954 (0.002) 0.954 (0.002) 1.000 (0.000) 2723.702 (21.780) 625.674 (4.726) 2098.028 (25.370)
LD 0.884 (0.016) 0.882 (0.016) 0.923 (0.016) 66.668 (1.166) 17.091 (0.616) 49.578 (0.864)
HD 0.456 (0.003) 0.456 (0.003) 0.937 (0.000) 5997.213 (16.800) 520.072 (4.656) 5477.141 (17.040)
MD 0.623 (0.008) 0.623 (0.008) 0.928 (0.013) 1177.300 (10.920) 132.878 (3.122) 1044.421 (10.160)
LD 0.369 (0.022) 0.325 (0.024) 0.893 (0.010) 36.902 (0.717) 2.652 (0.250) 34.250 (0.667)
HD 0.851 (0.002) 0.851 (0.002) 0.937 (0.000) 7018.995 (17.460) 1541.542 (7.506) 5477.453 (17.150)
MD 0.934 (0.004) 0.934 (0.004) 0.932 (0.013) 1338.028 (11.340) 293.231 (2.567) 1044.797 (9.894)
LD 0.794 (0.024) 0.785 (0.025) 0.905 (0.012) 43.050 (0.986) 9.157 (0.521) 33.893 (0.714)
HD 0.614 (0.004) 0.614 (0.004) 0.904 (0.007) 5962.934 (17.070) 883.071 (6.702) 5079.863 (21.240)
MD 0.740 (0.009) 0.740 (0.009) 0.882 (0.019) 1158.624 (15.850) 185.901 (2.806) 972.722 (14.880)
LD 0.521 (0.019) 0.488 (0.021) 0.889 (0.013) 38.556 (0.703) 4.527 (0.275) 34.029 (0.628)
HD 0.914 (0.001) 0.914 (0.001) 0.939 (0.000) 7174.011 (18.460) 1777.365 (6.033) 5396.647 (18.320)
MD 0.973 (0.002) 0.974 (0.002) 0.925 (0.014) 1345.604 (11.260) 318.478 (2.322) 1027.127 (9.693)
LD 0.898 (0.007) 0.898 (0.007) 0.900 (0.012) 45.149 (0.816) 11.268 (0.154) 33.881 (0.722)
HD 0.831 (0.003) 0.831 (0.003) 0.899 (0.003) 6757.821 (14.400) 1527.217 (8.778) 5230.604 (12.520)
MD 0.911 (0.004) 0.911 (0.004) 0.810 (0.019) 1367.105 (16.000) 285.680 (2.324) 1081.424 (15.160)
LD 0.797 (0.010) 0.789 (0.011) 0.880 (0.011) 41.828 (0.632) 9.200 (0.192) 32.627 (0.612)
HD 0.886 (0.001) 0.886 (0.001) 0.938 (0.000) 7085.285 (16.860) 1670.591 (5.673) 5414.694 (17.120)
MD 0.954 (0.003) 0.954 (0.003) 0.932 (0.013) 1336.623 (11.250) 305.466 (2.295) 1031.157 (9.724)
LD 0.846 (0.016) 0.841 (0.017) 0.908 (0.010) 44.275 (0.928) 10.142 (0.320) 34.132 (0.757)

HD 7304.112 (16.730) 1826.463 (5.926) 5477.650 (16.880) 10.448 (0.670) 20.896 (1.340) 58.610 (4.994)
MD 1361.982 (11.130) 322.860 (1.956) 1039.122 (9.591) 0.251 (0.066) 0.502 (0.132) 5.596 (1.277)
LD 45.964 (0.591) 11.532 (0.138) 34.431 (0.558) 0.117 (0.018) 0.234 (0.036) 0.614 (0.074)
HD 12284.768 (45.940) 6344.316 (2.955) 5940.453 (45.430) 40.157 (1.482) 80.315 (2.963) 0.000 (0.000)
MD 3235.199 (35.440) 1285.174 (0.970) 1950.025 (35.280) 0.000 (0.000) 0.000 (0.000) 1.386 (0.629)
LD 134.313 (1.454) 87.909 (0.367) 46.404 (1.306) 0.205 (0.061) 0.410 (0.122) 0.629 (0.205)
HD 5950.152 (40.220) 1228.586 (3.245) 4721.566 (38.330) 26.427 (0.642) 52.854 (1.283) 120.034 (3.224)
MD 2759.099 (22.120) 661.071 (3.728) 2098.028 (25.370) 0.770 (0.071) 1.540 (0.141) 0.000 (0.000)
LD 69.529 (0.969) 19.966 (0.239) 49.564 (0.873) 0.256 (0.071) 0.511 (0.142) 0.526 (0.136)
HD 8028.757 (17.410) 2551.591 (7.658) 5477.166 (17.040) 373.648 (3.292) 747.296 (6.585) 61.264 (4.872)
MD 1431.980 (12.240) 387.559 (3.054) 1044.421 (10.160) 31.544 (1.212) 63.088 (2.425) 5.621 (1.319)
LD 51.820 (0.848) 17.656 (0.478) 34.164 (0.660) 3.238 (0.234) 6.476 (0.468) 0.836 (0.109)
HD 7344.104 (17.120) 1866.639 (5.543) 5477.466 (17.150) 30.395 (0.936) 60.791 (1.873) 59.575 (4.737)
MD 1370.590 (11.380) 325.848 (1.912) 1044.742 (9.908) 1.104 (0.120) 2.209 (0.241) 5.798 (1.272)
LD 46.171 (0.787) 12.287 (0.287) 33.884 (0.715) 0.504 (0.120) 1.007 (0.240) 0.640 (0.113)
HD 7256.415 (18.130) 2176.544 (5.846) 5079.871 (21.240) 202.056 (3.269) 404.111 (6.537) 111.777 (8.364)
MD 1306.505 (16.110) 333.783 (2.223) 972.722 (14.880) 16.153 (0.741) 32.306 (1.481) 15.263 (2.168)
LD 48.889 (0.783) 14.861 (0.377) 34.027 (0.619) 1.916 (0.150) 3.832 (0.300) 0.849 (0.110)
HD 7200.366 (18.510) 1803.720 (6.136) 5396.647 (18.320) 11.915 (0.638) 23.830 (1.276) 59.875 (4.809)
MD 1348.443 (11.230) 321.315 (2.272) 1027.128 (9.693) 0.386 (0.076) 0.772 (0.151) 7.854 (1.449)
LD 45.381 (0.816) 11.500 (0.143) 33.881 (0.722) 0.149 (0.019) 0.298 (0.037) 0.682 (0.100)
HD 7000.649 (14.710) 1770.033 (9.165) 5230.616 (12.520) 35.097 (1.586) 70.195 (3.172) 104.508 (8.334)
MD 1393.075 (16.100) 311.654 (2.364) 1081.421 (15.160) 2.120 (0.188) 4.240 (0.377) 21.626 (1.991)
LD 43.930 (0.639) 11.310 (0.142) 32.621 (0.613) 0.401 (0.033) 0.801 (0.067) 0.867 (0.105)
HD 7252.415 (16.880) 1837.721 (5.487) 5414.694 (17.120) 19.738 (0.782) 39.476 (1.563) 59.575 (4.737)
MD 1353.737 (11.360) 322.596 (2.173) 1031.142 (9.727) 0.673 (0.090) 1.346 (0.181) 6.299 (1.272)
LD 45.973 (0.821) 11.825 (0.174) 34.149 (0.746) 0.304 (0.066) 0.609 (0.131) 0.650 (0.089)

Average system fill 
rate

Average fill rate 
at the lowest 

echelon 
Average fill rate at 
the highest echelon 

Average true 
system inventory

Average true 
inventory at the 
lowest echelon 

Average true 
inventory at the 
highest echelon 

Average recorded 
system inventory

Average 
recorded 

inventory at the 
lowest echelon 

Average recorded 
inventory at the 
highest echelon 

Average number 
of backorders in 

the system

Average number 
of backorders at 

the lowest echelon 

Average number 
of backorders at 

the highest echelon 

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9
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The first scenario in Table 3 gives the results for different demand levels when there is no 

error introduced to the system. The second and the third scenarios represent the situations where 

there is high error and low error respectively, with (R, Q) values re-optimized to achieve 0.90 fill 

rate for IHPs in the system. As seen in the table, although the fill rates are maintained as 

targeted, the system carries an excessive amount of inventory to mask the errors introduced. 

Especially when there is high error in the system and high demand for the item, system level 

inventory may increase dramatically. The change is more visible in average recorded system 

inventory since there is no cycle counting occurring in the system.  The effect of error is not only 

on the inventory levels but also on average backorders. Regardless of the error level for high 

item demands, the average number of backorders increases (~300% increase in high error case 

and ~130% increase in low error case). Considering S4 and S5 where (R, Q) values from 

scenario 1 (thus not re-optimized values) are used, we can clearly see the effect of the error in the 

system. When we compare scenarios S4 and S5 with S2 and S3, we can observe a noticeable fill 

rate decrease (~50% decrease) in S4 where high error rates are used. However in S5 where low 

error rates are applied, the changes in fill rates are not that severe. Since fill rates are lower, 

especially in S4, system, both true and recorded inventory levels are also low. This means that 

the system performs poorly and since there is no chance to correct the records, IHPs don’t carry 

the necessary inventory with original (R, Q) values. Average backorders increase in both 

scenarios. However, in S4 this increase is from ~10 to ~370 items at the system level.  

Comparing S6 and S7 with S4 and S5 shows that the system benefits from cycle counting 

in terms of higher fill rates, less on hand inventory, and less backorders. Although this recovery 

is well received in S7, in S6 the average system fill rate is still ~50% to ~75% depending on the 

demand rate. An interesting result from this experiment is that although the inventory levels 

decrease some, this change is not that substantial for the fill rate increase. This shows that cycle 
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counting helps increase fill rates in the system while keeping the inventory levels the same or 

decreasing them a little.  Average number of backorders decrease in S6 and S7 because of the 

effect of cycle counts. Changing the frequency of cycle counting in S8 and S9 reveals that even 

though there is low error in the system, more frequent cycle counting provides better 

performance values. Overall all of the performance measures are improved in S8 where there are 

high error rates in the system and cycle counting frequency is 28 days. In S9, where there are low 

error rates and the frequency is 128 days, the performance measure values are worse than in S6 

(the same error settings but frequency is 28 days).  

As seen in the table, demand rates may have strong effects on the performance measures. 

In every scenario, average inventory levels as well as the average number of backorders are 

substantially higher in high demand cases than medium and low demand cases. There are some 

cases in which low demand cases outperform medium demand cases in terms of fill rates, and 

number of backorders; however, these cases are very limited and the differences are very small.  

The next set of scenarios was developed to observe the effect of the probability of 

positive transaction error in the system. In order to demonstrate the sensitivity of this parameter 

in the system, we modelled two scenarios, S10 and S11. In both scenarios, we used medium 

demand and optimized inventory policy parameters (from S1); however, we varied the positive 

transaction error probability (25%, 50%, and 75%) in the system for high and low error settings. 

Scenario S10 illustrates the system with high error settings whereas S11 models the system with 

low error parameters. System parameters for these scenarios are given in Table 4. Results of the 

scenarios are given in Table 5. 
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Table 4 System Parameters for Scenarios 10 and 11 

Inventory Policy Parameters
Retailer Reorder Point (R Retailer  ) 10 units 10 units
Retailer Reorder Quantity (Q Retailer  ) 339 units 339 units
Warehouse Reorder Point (R Warehouse  ) 191 units 191 units
Warehouse Reorder Quantity (Q Warehouse  ) 2556 units 2556 units
Retailer Time Between Demands (days) Exp (0.1) Exp (0.1)
Retailer Replenishment Delay (days) 3 3
Warehouse Replenishment Delay (days) 14 14

System Error Parameters 
Retailer Receipt Transaction Error Probability 8% 4%
Warehouse Receipt Transaction Error Probability 4% 2%
Probability of Positive Transaction Error 25% 50% 75% 25% 50% 75%
Retailer Mean TBA of Stock Loss Error (days) 2 20
TBCC (days) 182 28

S10 S11

 

Table 5 Results for Scenarios 10 and 11 

25% 0.740 (0.009) 0.740 (0.009) 0.885 (0.018) 1158.947 (15.900) 186.067 (2.765) 972.880 (14.960)
50% 0.740 (0.009) 0.740 (0.009) 0.882 (0.019) 1158.624 (15.850) 185.901 (2.806) 972.722 (14.880)
75% 0.739 (0.009) 0.739 (0.009) 0.882 (0.019) 1158.721 (15.810) 185.847 (2.817) 972.873 (14.830)
25% 0.973 (0.002) 0.974 (0.002) 0.925 (0.014) 1345.604 (11.260) 318.478 (2.322) 1027.127 (9.693)
50% 0.973 (0.002) 0.974 (0.002) 0.925 (0.014) 1345.604 (11.260) 318.478 (2.322) 1027.127 (9.693)
75% 0.973 (0.002) 0.974 (0.002) 0.925 (0.014) 1345.604 (11.260) 318.478 (2.322) 1027.127 (9.693)

25% 1306.667 (16.190) 333.787 (2.215) 972.880 (14.960) 16.130 (0.735) 32.260 (1.470) 15.143 (2.140)
50% 1306.505 (16.110) 333.783 (2.223) 972.722 (14.880) 16.153 (0.741) 32.306 (1.481) 15.263 (2.168)
75% 1306.693 (16.080) 333.819 (2.235) 972.874 (14.830) 16.158 (0.733) 32.316 (1.465) 15.175 (2.131)
25% 1348.438 (11.230) 321.310 (2.271) 1027.128 (9.693) 0.386 (0.076) 0.772 (0.151) 7.854 (1.449)
50% 1348.443 (11.230) 321.315 (2.272) 1027.128 (9.693) 0.386 (0.076) 0.772 (0.151) 7.854 (1.449)
75% 1348.482 (11.240) 321.354 (2.272) 1027.128 (9.693) 0.386 (0.076) 0.772 (0.151) 7.854 (1.449)

Average system 
fill rate

Average fill rate 
at the lowest 

echelon 
Average fill rate at 
the highest echelon 

Average true 
system inventory

Average true 
inventory at the 
lowest echelon 

Average true 
inventory at the 
highest echelon 

Average recorded 
system inventory

Average 
recorded 

inventory at the 
lowest echelon 

Average recorded 
inventory at the 
highest echelon 

Average number 
of backorders in 

the system

Average 
number of 

backorders at 
the lowest 
echelon 

Average number 
of backorders at 

the highest echelon 

S10

S11

S10

S11

 

 As seen in Table 5, there is very little difference when changing the positive transaction 

error probability. Even in S10 with high error system settings where there is more transaction 

error, the changes in performance measure values are negligible. Thus, we conclude that our 

assumption concerning a 50% probability of a gain or a loss is very reasonable. 

4.3 Analysis of Novel Scenarios 

In the second phase of the analysis two novel scenarios are introduced: (1) learning and 

(2) non-compliance. The prevention and reduction of inventory record errors over time is a 
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known key benefit of cycle counting. When the cycle count learning effect is present, we 

hypothesize that the retailers learn from their cycle counting process and take remedial action to 

reduce the frequency of stock loss. We used a base learning rate of 85% in the simulation. Thus, 

as the frequency of cycle counting occurrence increases, the stock loss rate reduces. In the non-

compliance scenario, we developed cases where one or more retailers do not perform cycle 

counting and measured the overall effect on system performance. In addition to these novel 

scenarios, the effect of opportunity counts in the overall performance of the system was 

analyzed.  

For the scenario with learning effect introduced, a combination of high and low error 

system parameters was used. System parameters for the learning effect scenarios including 

inventory policy parameters and error parameters are given in Table 6. A special case was 

developed for benchmarking in which none of the retailers in the system has the learning effect. 

Thus, there is no change on the rate of stock loss in the system for that case. In this special case 

TBCC was determined as 56 days (once every two months). In this scenario, the effect of 

learning was analyzed by varying the number of retailers that perform cycle counts and learn in 

every cycle count (1 or 2) and by varying the TBCC (frequency of cycle counts = 7 days [one 

week], 14 days [two weeks], 28 days [one months], and 56 days [two months]). The performance 

measure results of the scenarios are given in Table 7. 
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Table 6 System Parameters for the Learning Effect Scenario 

Inventory Policy Parameters
Retailer Reorder Point (R Retailer  ) 10 units
Retailer Reorder Quantity (Q Retailer  ) 339 units
Warehouse Reorder Point (R Warehouse  ) 191 units
Warehouse Reorder Quantity (Q Warehouse  ) 2556 units
Retailer Time Between Demands (days) Exp (0.1)
Retailer Replenishment Delay (days) 3
Warehouse Replenishment Delay (days) 14

System Error Parameters 
Retailer Receipt Transaction Error Probability 8%
Warehouse Receipt Transaction Error Probability 4%
Probability of Positive Transaction Error 50%
Retailer Mean TBA of Stock Loss Error (days) 7
TBCC (days) 28  

Table 7 Results for the Learning Effect Scenario 

TBCC Retailer
56 N/A 0.949 (0.004) 0.949 (0.004) 0.893 (0.016) 1302.246 (13.270) 299.156 (2.819) 1003.090 (11.610)

1 0.970 (0.003) 0.970 (0.003) 0.901 (0.014) 1327.678 (11.660) 314.174 (2.381) 1013.503 (10.110)
2 0.975 (0.002) 0.976 (0.002) 0.913 (0.014) 1339.242 (12.220) 318.278 (2.376) 1020.964 (10.530)
1 0.969 (0.003) 0.969 (0.003) 0.901 (0.017) 1326.619 (12.580) 311.880 (2.524) 1014.738 (11.150)
2 0.974 (0.002) 0.974 (0.002) 0.912 (0.014) 1331.456 (10.860) 316.025 (2.208) 1015.431 (9.309)
1 0.963 (0.003) 0.964 (0.003) 0.908 (0.015) 1321.461 (12.480) 309.121 (2.148) 1012.340 (11.450)
2 0.966 (0.003) 0.966 (0.003) 0.909 (0.015) 1322.701 (11.670) 310.823 (2.356) 1011.878 (10.160)
1 0.951 (0.003) 0.951 (0.003) 0.899 (0.015) 1306.696 (12.970) 301.076 (2.607) 1005.620 (11.500)
2 0.953 (0.004) 0.953 (0.004) 0.904 (0.012) 1306.731 (13.130) 302.001 (2.760) 1004.730 (11.250)

TBCC Retailer
56 N/A 1316.985 (13.260) 313.910 (2.668) 1003.075 (11.610) 0.977 (0.148) 1.954 (0.297) 12.733 (2.046)

1 1329.205 (11.650) 315.702 (2.360) 1013.502 (10.110) 0.565 (0.108) 1.130 (0.217) 11.246 (1.867)
2 1340.283 (12.210) 319.319 (2.366) 1020.964 (10.530) 0.413 (0.090) 0.826 (0.180) 8.974 (1.678)
1 1329.764 (12.550) 315.024 (2.479) 1014.740 (11.150) 0.597 (0.106) 1.194 (0.212) 12.202 (1.911)
2 1333.859 (10.830) 318.427 (2.205) 1015.432 (9.309) 0.435 (0.092) 0.869 (0.183) 9.223 (1.631)
1 1328.302 (12.440) 315.962 (2.104) 1012.340 (11.450) 0.642 (0.099) 1.284 (0.198) 11.101 (1.623)
2 1328.489 (11.650) 316.611 (2.315) 1011.877 (10.160) 0.593 (0.104) 1.186 (0.208) 11.073 (1.719)
1 1320.275 (13.000) 314.669 (2.573) 1005.605 (11.510) 0.930 (0.129) 1.861 (0.258) 12.111 (1.895)
2 1319.288 (12.960) 314.573 (2.549) 1004.715 (11.250) 0.849 (0.130) 1.698 (0.260) 11.679 (1.956)

Average fill rate at 
the highest echelon 

Average true 
system inventory

Average true 
inventory at the 
lowest echelon 

Average true 
inventory at the 
highest echelon 

Average system 
fill rate

Average fill rate 
at the lowest 

echelon 

Average recorded 
system inventory

Average 
recorded 

inventory at the 
lowest echelon 

Average recorded 
inventory at the 
highest echelon 

Average number 
of backorders in 

the system

Average 
number of 

backorders at 
the lowest 
echelon 

Average number 
of backorders at 

the highest echelon 

56

7

14
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56

7

14

28

 

As seen in Table 7, in overall learning cases (Retailer = 1 or 2) for different TBCC values 

the results indicate better performance measure values than the non-learning case (special case). 

This is especially the situation for average system fill rate values, which represent a measure for 

customer satisfaction, which improve significantly. In addition, the average true system 
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inventory results indicate that the inventory levels in the system change dramatically when there 

is learning. As the frequency of cycle counts increase (smaller TBCC), the learning effect 

becomes more visible within the performance measures. More specifically, the difference 

between average true inventory levels and average recorded inventory levels become more 

noticeable. In most of the cases the system performs better in the cases of both retailers learning 

from cycle counting (Retailer = 2) when compared to the cases of only one retailer learning as it 

counts (Retailer = 1). One interesting observation is that as the TBCC increases the effect of 

learning decreases between the cases with one retails learns and two retailers learn. This 

behaviour is more visible for inventory levels. There is more difference in the inventory levels 

between the TBCC = 7 case and the TBCC = 56 case.  

For the scenario with non-compliance introduced, the same system parameters in the 

scenario with learning, given in Table 6, were used. A fixed 85% learning curve effect was 

applied to the cycle counts. TBCC was determined as 28 days (one month) for all cycle counts in 

the system. A special case in this scenario was also developed here for benchmarking in which 

both retailers as well as the warehouse cycle count monthly. In this scenario, the effect of non-

compliance was analyzed by varying the number of IHPs in the system that do not cycle count at 

all. The performance measure results of the scenarios are given in Table 8. 

Table 8 Results for the Non-Compliance Scenario 

Fully Compliant 0.966 (0.003) 0.966 (0.003) 0.909 (0.015) 1322.701 (11.670) 310.823 (2.356) 1011.878 (10.160)
Only 1 Retailer Cycle Counts 0.908 (0.004) 0.908 (0.004) 0.919 (0.012) 1302.811 (12.980) 274.991 (2.947) 1027.820 (11.720)
Only 2 Retailers Cycle Count 0.966 (0.003) 0.966 (0.003) 0.909 (0.015) 1322.701 (11.670) 310.823 (2.356) 1011.878 (10.160)
Only Warehouse Cycle Counts 0.854 (0.005) 0.853 (0.005) 0.929 (0.014) 1282.847 (11.730) 241.577 (3.195) 1041.270 (10.210)
Non-Compliance 0.854 (0.005) 0.853 (0.005) 0.929 (0.014) 1282.847 (11.730) 241.577 (3.195) 1041.270 (10.210)

Fully Compliant 1328.489 (11.650) 316.611 (2.315) 1011.877 (10.160) 0.593 (0.104) 1.186 (0.208) 11.073 (1.719)
Only 1 Retailer Cycle Counts 1352.636 (13.180) 324.816 (2.262) 1027.820 (11.720) 2.971 (0.280) 5.942 (0.561) 8.582 (1.514)
Only 2 Retailers Cycle Count 1328.476 (11.650) 316.611 (2.315) 1011.865 (10.160) 0.593 (0.104) 1.186 (0.208) 11.073 (1.719)
Only Warehouse Cycle Counts 1374.620 (12.000) 333.350 (2.405) 1041.271 (10.210) 5.051 (0.343) 10.102 (0.686) 6.410 (1.470)
Non-Compliance 1374.648 (11.990) 333.350 (2.405) 1041.298 (10.200) 5.051 (0.343) 10.102 (0.686) 6.410 (1.470)

Average system fill 
rate

Average fill rate at 
the lowest echelon 

Average fill rate at 
the highest echelon 

Average true 
system inventory

Average true 
inventory at the 
lowest echelon 

Average true 
inventory at the 
highest echelon 

Average recorded 
system inventory

Average recorded 
inventory at the 
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Average recorded 
inventory at the 
highest echelon 

Average number of 
backorders in the 

system
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Average number of 
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 38 

The results in Table 8 indicate that there is a constant improvement in the system if IHPs 

cycle count. This improvement is more observable when retailers participate in the cycle 

counting. There is virtually no difference in performance between the non-compliance (no IHP 

cycle counts) case and the case where only the warehouse cycle counts in the system. Similarly, 

there is virtually no difference between the full-compliance (all IHPs cycle count) case and the 

case with both retailers cycle counting. Insignificant performance changes are only at the system 

level due to the performance changes of the warehouse. Thus, we can conclude that the effect of 

warehouse cycle counts is minimal in overall system performance.  This is also attributable to the 

fact that we do not model stock loss at the warehouse level.  However, there are substantial 

differences in cases when one retailer cycle counts and both retailers cycle count. Based on the 

results of surface charts in the base case analysis and the results derived from these experiments, 

we would expect that the fill rates will increase as the TBCC increases (up to one year). This 

change is more significant if the TBA of stock loss is less than 7 days. Similarly, average number 

of backorders in the system should increase as the TBCC increases. In summary, cycle counting 

at the retailer level affects system performance considerably; the more retailers that cycle count 

the better the overall performance achieved.  

Next, we analyzed the effect of opportunity counting on the system by utilizing irregular 

and situation-triggered counts. For this analysis, we considered cases with opportunity count and 

cycle counts. Opportunity counts were triggered when there was a demand for an item with 

positive recorded inventory and a zero actual inventory level. We assumed that the records were 

corrected by a triggered opportunity count and the items are backordered. In the cycle count 

cases, TBCC was used as 28 days. We also assumed that in every case the 85% learning effect 

applies regardless of the count type. The inventory policy parameters and system error 
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parameters given in Table 5 were used in this scenario. The performance measure results of the 

scenarios are given in Table 9. 

Table 9 Results for the Opportunity Count Scenario 

With OC and CC 0.967 (0.003) 0.967 (0.003) 0.909 (0.014) 1325.817 (12.350) 311.797 (2.200) 1014.020 (11.080)
With OC Without CC 0.949 (0.002) 0.949 (0.002) 0.908 (0.014) 1307.649 (11.550) 298.439 (2.285) 1009.210 (10.030)
Without OC With CC 0.966 (0.003) 0.966 (0.003) 0.909 (0.015) 1322.701 (11.670) 310.823 (2.356) 1011.878 (10.160)
Without OC and CC 0.854 (0.005) 0.853 (0.005) 0.929 (0.014) 1282.847 (11.730) 241.577 (3.195) 1041.270 (10.210)

With OC and CC 1330.485 (12.410) 316.465 (2.252) 1014.020 (11.080) 0.546 (0.098) 1.092 (0.197) 9.923 (1.707)
With OC Without CC 1321.110 (11.590) 311.900 (2.308) 1009.210 (10.030) 0.880 (0.119) 1.760 (0.239) 10.840 (1.785)
Without OC With CC 1328.489 (11.650) 316.611 (2.315) 1011.877 (10.160) 0.593 (0.104) 1.186 (0.208) 11.073 (1.719)
Without OC and CC 1374.648 (11.990) 333.350 (2.405) 1041.298 (10.200) 5.051 (0.343) 10.102 (0.686) 6.410 (1.470)

Average recorded 
system inventory

Average recorded 
inventory at the 
lowest echelon 

Average recorded 
inventory at the 
highest echelon 

Average number of 
backorders in the 

system

Average number of 
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Average number of 
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highest echelon 

Average system fill 
rate

Average fill rate at 
the lowest echelon 

Average fill rate at 
the highest echelon 

Average true 
system inventory

Average true 
inventory at the 
lowest echelon 

Average true 
inventory at the 
highest echelon 

 

As seen in Table 9, there are substantial differences in system performance measure 

values when any type of counting is introduced to the system. Introducing only cycle counting in 

the system has more impact on system performance than introducing only opportunity counting. 

Introducing both counting methods provide slightly better results than only the scheduled cycle 

counting case. Therefore, employing both cases may not be necessary if there are regular 

monthly cycle counts in the system.  

5. Conclusions and Future Research 

Benchmarking research has shown that those companies that perform cycle counting 

achieve best-in-class performance in inventory record accuracy. Best-in-class performance of 

99% and above inventory record accuracy (based on the general definition of accuracy involving 

multiple fields) was achieved by those companies that dedicated appropriate resources to cycle 

counting, that had advanced computer system support, and that emphasized finding and 

eliminating common process errors. In this paper, we have shown that not only does cycle 

counting payoff in terms of inventory record accuracy, but that cycle counting has major benefits 

throughout a supply chain. 
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 Companies that have poor inventory record accuracy (especially the ones with high 

shrinkage and transaction error) experience poor customer service (between ~36% and ~62% in 

our settings depending on item demand) and increased inventory costs. One method of hiding the 

inventory record accuracy problem is to carry more inventory, in order to still provide adequate 

customer service. However, this often results in excessive inventory levels (between ~18% and 

~112% in our settings depending on item demand). Moreover, the number of backordered items 

increase dramatically (sometimes around 300%). In this paper, we examined the impact of 

carrying this additional inventory within a supply chain. The results indicate that significant 

additional inventory must be maintained so that the supply chain can still maintain adequate 

customer performance in the face of inventory record accuracy.  Companies that have very low 

historical record accuracy should take this as an important justification for implementing cycle 

counting. 

 Moreover, companies with high shrinkage and transaction errors need to carry more 

inventory than the companies with low errors for the items with medium and low demands 

(~18% or more in our settings). One interesting result from the experimentation showed that 

although a company with high errors doesn’t carry more inventory for high demand items than 

the company with low errors, the fill rates for these items are substantially (sometimes ~50%) 

lower than the fill rates in the company with low errors. Regardless of the error and item demand 

level, cycle counting (overall) helps achieving better performance measure values. Frequency of 

the cycle counting also affects the performance of the system. Within the same system settings, 

more frequent cycle counts result in better performance measure values (~2% difference in fill 

rate, ~3% difference in inventory levels, and ~50% difference in fill rates comparing weekly 

cycle counts with bimonthly cycle counts).  
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We have also shown that within a supply chain it is imperative that all the supply chain 

partners guarantee and comply with adequate inventory recording keeping. Supply chain partners 

who do not have control over their inventory records cause increased costs for themselves and 

throughout the supply chain. In our settings, one retailer not cycle counting may cause ~6% 

decrease in fill rate, ~2% increase in inventory, and ~400% increase in backorders. One of the 

basic tenets (see Brooks and Wilson (1995)) of properly implementing a cycle counting program 

is to tie the performance evaluation system of the inventory managers to proper inventory record 

accuracy. From our research on the non-compliance case, we can recommend that supply chain 

managers consider adopting performance clauses between companies within a supply chain so 

that partners are assured that desired levels of inventory record accuracy are maintained.   

Finally, our work shows that another of the basic tenets of cycle counting, that of 

prevention and reduction of errors, is critical in implementing a good cycle counting program.  

The results from the simulation model show that the learning effect has benefits both locally and 

throughout the supply chain. In our settings, system level improvements may go up to ~3% 

increase in fill rate, ~600% increase in inventory visibility (average true system inventory-

average recorded system inventory), and ~100% decrease in backorders if there is 85% learning 

effect. Our results confirm many of the benefits of cycle counting and point the way towards 

how cycle counting can be evaluated within a supply chain.  Future work includes the 

investigation of the optimal timing and sample size for cycle counting programs within a supply 

chain in order to minimize cycle counting cost and inventory costs while still maintaining overall 

supply chain inventory record accuracy and customer service objectives. In addition, future 

research can also explore how to optimally design cycle counting procedures, and supplier 

contracts, etc. for mitigating error effects within the supply chain. 
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Figure A-1 Histogram for Negative Discrepancy Values 
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Figure A-2 Histogram for Positive Discrepancy Values 
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Figure A-3 Retailer Fill Rate for TBCC vs. TBA of Stock Loss Error 
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Table A-1 Surface Chart System Parameters  

System Error Parameters 
Retailer Receipt Transaction Error Probability 8%
Warehouse Receipt Transaction Error Probability 4%
Probability of Positive Transaction Error 50%

Varying System Parameters 
TBA of Stock Loss Error (days)
TBCC 0 to 48 days in increments of 1 day

0 to 364 in increments of 7 days
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Table A-2 System Parameters for Scenarios 1-9 

Inventory Policy Parameters HD MD LD HD MD LD HD MD LD
Retailer Reorder Point (R Retailer  ) 1 units 10 units 1 units 2474 units 549 units 33 units 302 units 5 units 1 units
Retailer Reorder Quantity (Q Retailer  ) 2168 units 339 units 12 units 1627 units 217 units 24 units 994 units 680 units 20 units
Warehouse Reorder Point (R Warehouse  ) 1395 units 191 units 1 units 3759 units 227 units 4 units 45 units 82 units 15 units
Warehouse Reorder Quantity (Q Warehouse  ) 10887 units 2556 units 84 units 9870 units 8556 units 96 units 11770 units 4126 units 89 units
Retailer Time Between Demands (days) Exp (0.01) Exp (0.1) Exp (1) Exp (0.01) Exp (0.1) Exp (1) Exp (0.01) Exp (0.1) Exp (1)
Retailer Replenishment Delay (days) 3 3 3 3 3 3 3 3 3
Warehouse Replenishment Delay (days) 14 14 14 14 14 14 14 14 14

System Error Parameters 
Retailer Receipt Transaction Error Probability 8% 4%
Warehouse Receipt Transaction Error Probability 4% 2%
Probability of Positive Transaction Error 50% 50%
Retailer Mean TBA of Stock Loss Error (days) 0.2 2 20 2 20 200
TBCC (days) N/A N/A

Inventory Policy Parameters HD MD LD HD MD LD HD MD LD
Retailer Reorder Point (R Retailer  ) 1 units 10 units 1 units 1 units 10 units 1 units 1 units 10 units 1 units
Retailer Reorder Quantity (Q Retailer  ) 2168 units 339 units 12 units 2168 units 339 units 12 units 2168 units 339 units 12 units
Warehouse Reorder Point (R Warehouse  ) 1395 units 191 units 1 units 1395 units 191 units 1 units 1395 units 191 units 1 units
Warehouse Reorder Quantity (Q Warehouse  ) 10887 units 2556 units 84 units 10887 units 2556 units 84 units 10887 units 2556 units 84 units
Retailer Time Between Demands (days) Exp (0.01) Exp (0.1) Exp (1) Exp (0.01) Exp (0.1) Exp (1) Exp (0.01) Exp (0.1) Exp (1)
Retailer Replenishment Delay (days) 3 3 3 3 3 3 3 3 3
Warehouse Replenishment Delay (days) 14 14 14 14 14 14 14 14 14

System Error Parameters 
Retailer Receipt Transaction Error Probability 8% 4% 8%
Warehouse Receipt Transaction Error Probability 4% 2% 4%
Probability of Positive Transaction Error 50% 50% 50%
Retailer Mean TBA of Stock Loss Error (days) 0.2 2 20 2 20 200 0.2 2 20
TBCC (days) N/A N/A 182

Inventory Policy Parameters HD MD LD HD MD LD HD MD LD
Retailer Reorder Point (R Retailer  ) 1 units 10 units 1 units 1 units 10 units 1 units 1 units 10 units 1 units
Retailer Reorder Quantity (Q Retailer  ) 2168 units 339 units 12 units 2168 units 339 units 12 units 2168 units 339 units 12 units
Warehouse Reorder Point (R Warehouse  ) 1395 units 191 units 1 units 1395 units 191 units 1 units 1395 units 191 units 1 units
Warehouse Reorder Quantity (Q Warehouse  ) 10887 units 2556 units 84 units 10887 units 2556 units 84 units 10887 units 2556 units 84 units
Retailer Time Between Demands (days) Exp (0.01) Exp (0.1) Exp (1) Exp (0.01) Exp (0.1) Exp (1) Exp (0.01) Exp (0.1) Exp (1)
Retailer Replenishment Delay (days) 3 3 3 3 3 3 3 3 3
Warehouse Replenishment Delay (days) 14 14 14 14 14 14 14 14 14

System Error Parameters 
Retailer Receipt Transaction Error Probability 4% 8% 4%
Warehouse Receipt Transaction Error Probability 2% 4% 2%
Probability of Positive Transaction Error 50% 50% 50%
Retailer Mean TBA of Stock Loss Error (days) 2 20 200 0.2 2 20 2 20 200
TBCC (days) 28 28 128

S8 S9

N/A
N/A

S6S5

N/A

S4

S7

N/A
N/A

S1 S2 S3
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